The role of microbiota in cardiovascular diseases
PDF (Türkçe)

Keywords

Cardiovascular diseases
microbiota regulation
gut microbiota

How to Cite

Kökcü, E., Akil, Üla, & Asil, E. (2022). The role of microbiota in cardiovascular diseases. Toros University Journal of Food, Nutrition and Gastronomy, 1(1), 91–100. https://doi.org/10.58625/jfng-1934

Abstract

The morbidity and mortality of cardiovascular diseases are quite high worldwide. This situation causes the pathogenesis of the disease and the treatment methods to be constantly investigated. Studies conducted in recent years show that cardiovascular diseases are associated with many chronic diseases as well as with intestinal microbiota. Intestinal microbiota is accepted as the largest endocrine organ of the body. The diversity of the microbiota differs between individuals as it is affected by genetic and many environmental factors. It is thought that the regulation of the intestinal microbiota with various applications such as diet therapy, probiotic therapy, antibiotic therapy, fecal microbiota transplantation, microbial enzyme inhibitors may also be a potential treatment for cardiovascular diseases. Therefore, understanding the role of the gut microbiota in the occurrence and development of cardiovascular diseases will help to better understand the pathogenesis of the disease and provide new ideas for treatment. In this review, the relationship between intestinal microbiota and its metabolites and cardiovascular diseases is explained

https://doi.org/10.58625/jfng-1934
PDF (Türkçe)

References

Aguilar, E. C., Dos Santos, L. C., Leonel, A. J., De Oliveira, J. S., Santos, E. A., Navia-Pelaez, J. M., Da Silva, J. F., Mendes, B. P., Capettini, L. S., & Teixeira, L. G. (2016). Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving nadph oxidase down-regulation in endothelial cells. The Journal of nutritional biochemistry, 34, 99-105.

Albenberg, L. G., & WU, G. D. (2014). Diet and The intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology, 146, 1564-1572.

Andraws, R., Berger, J. S., & Brown, D. L. (2005). Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. Jama, 293, 2641-2647.

Anselmi, G., Gagliardi, L., Egidi, G., Leone, S., Gasbarrini, A., Miggiano, G. A. D., & Galiuto, L. (2021). Gut microbiota and cardiovascular diseases: a critical review. Cardiology in Review, 29, 195-204.

Begley, M., Gahan, C. G., & Hill, C. (2005). The interaction between bacteria and bile. FEMS Microbiology Reviews, 29, 625-651.

Bennett, B. J., De Aguiar Vallim, T. Q., Wang, Z., Shih, D. M., Meng, Y., Gregory, J., Allayee, H., Lee, R., Graham, M., & Crooke, R. (2013). Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metabolism, 17, 49-60.

Biah, O., Rubinstein, I., Bomzon, A., & Better, O. S. (1987). Effects of bile acids on ventricular muscle contraction and electrophysiological properties: studies in rat papillary muscle and isolated ventricular myocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 335, 160-165.

Brown, J. M., & Hazen, S. L. (2015). The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annual Review of Medicine, 66, 343-359.

Brugère, J.-F., Borrel, G., Gaci, N., Tottey, W., O’toole, P. W., & Malpuech-Brugère, C. (2014). Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Taylor & Francis.

Cammarota, G., Ianiro, G., & Gasbarrini, A. (2014). Fecal microbiota transplantation for the treatment of clostridium difficile infection: a systematic review. Journal of Clinical Gastroenterology, 48, 693-702.

Chen, K., Zheng, X., Feng, M., Li, D., & Zhang, H. (2017). Gut microbiota-dependent metabolite trimethylamine n-oxide contributes to cardiac dysfunction in western diet-induced obese mice. Frontiers in Physiology, 8, 139.

Chen, M.-L., Yi, L., Zhang, Y., Zhou, X., Ran, L., Yang, J., Zhu, J.-D., Zhang, Q.-Y., & Mi, M.-T. (2016).

Resveratrol attenuates trimethylamine-n-oxide (TMAO)-induced atherosclerosis by regulating tmao synthesis and bile acid metabolism via remodeling of the gut microbiota. Mbio, 7, E02210-15.

Costanza, A. C., Moscavitch, S. D., Neto, H. C. F., & Mesquita, E. T. (2015). Probiotic therapy with saccharomyces boulardii for heart failure patients: a randomized, double-blind, placebo-controlled pilot trial. International Journal of Cardiology, 179, 348-350.

De La Cuesta-Zuluaga, J., Mueller, N. T., Álvarez-Quintero, R., Velásquez-Mejía, E. P., Sierra, J. A., Corrales-Agudelo, V., Carmona, J. A., Abad, J. M., & Escobar, J. S. (2018). Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients, 11, 51.

Durgan, D. J., Ganesh, B. P., Cope, J. L., Ajami, N. J., Phillips, S. C., Petrosino, J. F., Hollister, E. B., & Bryan, R. M. (2016). Role of the gut microbiome in obstructive sleep apnea– induced hypertension. Hypertension, 67, 469-474.

Duttaroy, A. (2021). Role of gut microbiota and their metabolites on atherosclerosis, hypertension and human blood platelet function: a review. Nutrients. 13 (1).

Eblimit, Z., Thevananther, S., Karpen, S. J., Taegtmeyer, H., Moore, D. D., Adorini, L., Penny, D. J., & Desai, M. S. (2018). Tgr 5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure‐induced stress in mice. Cardiovascular Therapeutics, 36, E12462.

Ellis, C. L., Bokulich, N. A., Kalanetra, K. M., Mirmiran, M., Elumalai, J., Haapanen, L., Schegg, T., Rutledge, J. C., Raff, G., & Mills, D. A. (2013). Probiotic administration in congenital heart disease: a pilot study. Journal of Perinatology, 33, 691-697.

Emoto, T., Yamashita, T., Kobayashi, T., Sasaki, N., Hirota, Y., Hayashi, T., So, A., Kasahara, K., Yodoi, K., & Matsumoto, T. (2017). Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart And Vessels, 32, 39-46.

Emoto, T., Yamashita, T., Sasaki, N., Hirota, Y., Hayashi, T., So, A., Kasahara, K., Yodoi, K., Matsumoto, T., & Mizoguchi, T. (2016). Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. Journal of Atherosclerosis and Thrombosis, 32672.

Gan, X. T., Ettinger, G., Huang, C. X., Burton, J. P., Haist, J. V., Rajapurohitam, V., Sidaway, J. E., Martin, G., Gloor, G. B., & Swann, J. R. (2014). Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circulation: Heart Failure, 7, 491-499.

Grayston, J. T., Kronmal, R. A., Jackson, L. A., Parisi, A. F., Muhlestein, J. B., Cohen, J. D., Rogers, W. J., Crouse, J. R., Borrowdale, S. L., & Schron, E. (2005). Azithromycin for the secondary prevention of coronary events. New England Journal of Medicine, 352, 1637-1645.

Guo, G. L., Santamarina-Fojo, S., Akiyama, T. E., Amar, M. J., Paigen, B. J., Brewer Jr, B., & Gonzalez, F. J. (2006). Effects of fxr in foam-cell formation and atherosclerosis development. Biochimica Et Biophysica Acta (Bba)-Molecular and Cell Biology Of Lipids, 1761, 1401-1409.

Hanniman, E. A., Lambert, G., Mccarthy, T. C., & Sinal, C. J. (2005). Loss of functional farnesoid x receptor increases atherosclerotic lesions in apolipoprotein e-deficient mice. Journal of Lipid Research, 46, 2595-2604.

Hartman, H. B., Gardell, S. J., Petucci, C. J., Wang, S., Krueger, J. A., & Evans, M. J. (2009). Activation of farnesoid x receptor prevents atherosclerotic lesion formation in ldlr−/− and apoe−/− mice. Journal of Lipid Research, 50, 1090-1100.

Hofmann, A. F., & Eckmann, L. (2006). How bile acids confer gut mucosal protection against bacteria. Proceedings of The National Academy of Sciences, 103, 4333-4334.

Hu, X.-F., Zhang, W.-Y., Wen, Q., Chen, W.-J., Wang, Z.-M., Chen, J., Zhu, F., Liu, K., Cheng, L.-X., & Yang, J. (2019). Fecal microbiota transplantation alleviates myocardial damage in myocarditis by restoring the microbiota composition. Pharmacological Research, 139, 412-421.

Jama, H. A., Fiedler, A., Tsyganov, K., Nelson, E., Horlock, D., Nakai, M. E., Kiriazis, H., Johnson, C., Du, X.-J., & Mackay, C. R. (2020). Manipulation of the gut microbiota by the use of prebiotic fibre does not override a genetic predisposition to heart failure. Scientific Reports, 10, 1-9.

Jie, Z., Xia, H., Zhong, S.-L., Feng, Q., Li, S., Liang, S., Zhong, H., Liu, Z., Gao, Y., & Zhao, H. (2017). The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 8, 1-12.

Jin, M., Qian, Z., Yin, J., Xu, W., & Zhou, X. (2019). The role of intestinal microbiota in cardiovascular disease. Journal of Cellular and Molecular Medicine, 23, 2343-2350.

Joubert, P. (1978). An in vivo investigation of the negative chronotropic effect of cholic acid in the rat. Clinical and Experimental Pharmacology & Physiology, 5, 1-8.

Katsi, V., Didagelos, M., Skevofilax, S., Armenis, I., Kartalis, A., Vlachopoulos, C., Karvounis, H., & Tousoulis, D. (2019). Gut microbiome-gut dysbiosis-arterial hypertension: new horizons. Current Hypertension Reviews, 15, 40-46.

Koeth, R. A., Levison, B. S., Culley, M. K., Buffa, J. A., Wang, Z., Gregory, J. C., Org, E., Wu, Y., Li, L., & Smith, J. D. (2014). Γ-butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of l-carnitine to TMAO. Cell Metabolism, 20, 799-812.

Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., Britt, E. B., Fu, X., Wu, Y. & Li, L. (2013). Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19, 576-585.

Koren, O., Spor, A., Felin, J., Fåk, F., Stombaugh, J., Tremaroli, V., Behre, C. J., Knight, R., Fagerberg, B., & Ley, R. E. (2011). Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proceedings of The National Academy of Sciences, 108, 4592-4598.

Kumar, S. A., Ward, L. C., & Brown, L. (2016). Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats. British Journal of Nutrition, 116, 1502-1511.

Kurtaran, B. (2021). Mikrobiyom ve mikrobiyota. Ege Tıp Dergisi, 88-93.

Lam, V., Su, J., Koprowski, S., Hsu, A., Tweddell, J. S., Rafiee, P., Gross, G. J., Salzman, N. H., & Baker, J. E. (2012). Intestinal microbiota determine severity of myocardial infarction in rats. The Faseb Journal, 26, 1727-1735.

Lawson-Yuen, A., & Levy, H. L. (2006). The Use of betaine in the treatment of elevated homocysteine. Molecular Genetics and Metabolism, 88, 201-207.

Lefebvre, P., Cariou, B., Lien, F., Kuipers, F., & Staels, B. (2009). Role of bile acids and bile acid receptors in metabolic regulation. Physiological Reviews, 89, 147-191.

Lopez-Garcia, E., Rodriguez-Artalejo, F., Li, T. Y., Fung, T. T., Li, S., Willett, W. C., Rimm, E. B., & Hu, F. B. (2014). The mediterranean-style dietary pattern and mortality among men and women with cardiovascular disease. The American Journal of Clinical Nutrition, 99, 172-180.

Marques, F. Z., Nelson, E., Chu, P.-Y., Horlock, D., Fiedler, A., Ziemann, M., Tan, J. K., Kuruppu, S., Rajapakse, N. W., & El-Osta, A. (2017). High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation, 135, 964-977.

Mayerhofer, C. C., Ueland, T., Broch, K., Vincent, R. P., Cross, G. F., Dahl, C. P., Aukrust, P., Gullestad, L., Hov, J. R., & Trøseid, M. (2017). Increased secondary/primary bile acid ratio in chronic heart failure. Journal Of Cardiac Failure, 23, 666-671.

Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. (2009). Antiatherosclerotic effect of farnesoid x receptor. American Journal of Physiology-Heart and Circulatory Physiology, 296, H272-H281.

Miao, J., Ling, A. V., Manthena, P. V., Gearing, M. E., Graham, M. J., Crooke, R. M., Croce, K. J., Esquejo, R. M., Clish, C. B., & Vicent, D. (2015). Flavin- containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nature Communications, 6, 1-10.

Miyazaki-Anzai, S., Masuda, M., Levi, M., Keenan, A. L., & Miyazaki, M. (2014). Dual activation of the bile acid nuclear receptor fxr and g-protein-coupled receptor tgr5 protects mice against atherosclerosis. Plos One, 9, E108270.

Natarajan, N., Hori, D., Flavahan, S., Steppan, J., Flavahan, N. A., Berkowitz, D. E., & Pluznick, J. L. (2016). Microbial short chain fatty acid metabolites lower blood pressure via endothelial g protein-coupled receptor 41. Physiological Genomics, 48, 826-834.

Pasini, E., Aquilani, R., Testa, C., Baiardi, P., Angioletti, S., Boschi, F., Verri, M., & Dioguardi, F. (2016). Pathogenic gut flora in patients with chronic heart failure. Jacc: Heart Failure, 4, 220-227.

Pluznick, J. L., Protzko, R. J., Gevorgyan, H., Peterlin, Z., Sipos, A., Han, J., Brunet, I., Wan, L.-X., Rey, F., & Wang, T. (2013). Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proceedings of The National Academy of Sciences, 110, 4410-4415.

Pouteau, E., Nguyen, P., Ballèvre, O., & Krempf, M. (2003). Production rates and metabolism of short-chain fatty acids in the colon and whole body using stable isotopes. Proceedings of The Nutrition Society, 62, 87-93.

Ravera, A., Carubelli, V., Sciatti, E., Bonadei, I., Gorga, E., Cani, D., Vizzardi, E., Metra, M., & Lombardi, C. (2016). Nutrition and cardiovascular disease: finding the perfect recipe for cardiovascular health. Nutrients, 8, 363.

Roberts, A. B., Gu, X., Buffa, J. A., Hurd, A. G., Wang, Z., Zhu, W., Gupta, N., Skye, S. M., Cody, D. B., & Levison, B. S. (2018). Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nature Medicine, 24, 1407-1417.

Romano, K. A., Vivas, E. I., Amador-Noguez, D., & Rey, F. E. (2015). Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-n-oxide. Mbio, 6, E02481-14.

Schiattarella, G. G., Sannino, A., Esposito, G., & Perrino, C. (2019). Diagnostics and Therapeutic implications of gut microbiota alterations in cardiometabolic diseases. Trends in Cardiovascular Medicine, 29, 141-147.

Seldin, M. M., Meng, Y., Qi, H., Zhu, W., Wang, Z., Hazen, S. L., Lusis, A. J., & Shih, D. M. (2016). Trimethylamine n‐oxide promotes vascular inflammation through signaling of mitogen‐activated protein kinase and nuclear factor‐κb. Journal of The American Heart Association, 5, E002767.

Senthong, V., Li, X. S., Hudec, T., Coughlin, J., Wu, Y., Levison, B., Wang, Z., Hazen, S. L., & Tang, W. W. (2016). Plasma trimethylamine n-oxide, a gut microbe–generated phosphatidylcholine metabolite, is associated with atherosclerotic burden. Journal of The American College of Cardiology, 67, 2620-2628.

Shih, D. M., Wang, Z., Lee, R., Meng, Y., Che, N., Charugundla, S., Qi, H., Wu, J., Pan, C., & Brown, J. M. (2015). Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis [S]. Journal of Lipid Research, 56, 22-37.

Skagen, K., Trøseid, M., Ueland, T., Holm, S., Abbas, A., Gregersen, I., Kummen, M., Bjerkeli, V., Reier-Nilsen, F., & Russell, D. (2016). The carnitine-butyrobetaine-trimethylamine-n-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis. Atherosclerosis, 247, 64-69.

Suganya, K., Son, T., Kim, K.-W., & Koo, B.-S. (2021). Impact of gut microbiota: how it could play roles beyond the digestive system on development of cardiovascular and renal diseases. Microbial Pathogenesis, 152, 104583.

Tang, W. W., Kitai, T., & Hazen, S. L. (2017). Gut microbiota in cardiovascular health and disease. Circulation Research, 120, 1183-1196.

Tang, W. W., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Fu, X., Wu, Y., & Hazen, S. L. (2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New England Journal of Medicine, 368, 1575-1584

Taur, Y., Coyte, K., Schluter, J., Robilotti, E., Figueroa, C., Gjonbalaj, M., Littmann, E. R., Ling, L., Miller, L., & Gyaltshen, Y. (2018). Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Science Translational Medicine, 10, Eaap9489.

Topping, D. L., & Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological Reviews.

Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027-1031.

Von Haehling, S., Schefold, J. C., Jankowska, E. A., Springer, J., Vazir, A., Kalra, P. R., Sandek, A., Fauler, G., Stojakovic, T., & Trauner, M. (2012). Ursodeoxycholic acid in patients with chronic heart failure: a double-blind, randomized, placebo-controlled, crossover trial. Journal of The American College of Cardiology, 59, 585-592.

Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., Feldstein, A. E., Britt, E. B., Fu, X., & Chung, Y.-M. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472, 57-63.

Wang, Z., Roberts, A. B., Buffa, J. A., Levison, B. S., Zhu, W., Org, E., Gu, X., Huang, Y., Zamanian-Daryoush, M., & Culley, M. K. (2015). Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell, 163, 1585-1595.

Witkowski, M., Weeks, T. L., & Hazen, S. L. (2020). Gut microbiota and cardiovascular disease. Circulation Research, 127, 553-570.

World Health Organization (2018). Noncommunicable diseases country profiles.

Xu, H., Wang, X., Feng, W., Liu, Q., Zhou, S., Liu, Q., & Cai, L. (2020). The Gut microbiota and its interactions with cardiovascular disease. Microbial Biotechnology, 13, 637-656.

Yeşil, P., & Altıok, M. (2012). Kardiyovasküler hastalıkların önlenmesi ve kontrolünde fiziksel aktivitenin önemi. Türk Kardiyoloji Derneği Kardiyovasküler Hemşirelik Dergisi, 3, 39-48.

Zabell, A., & Tang, W. (2017). Targeting the microbiome in heart failure. Current Treatment Options in Cardiovascular Medicine, 19, 1-12.

Zhang, Y., Wang, X., Vales, C., Lee, F. Y., Lee, H., Lusis, A. J., & Edwards, P. A. (2006). Fxr deficiency causes reduced atherosclerosis in ldlr−/− mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2316-2321.

Zhu, W., Gregory, J. C., Org, E., Buffa, J. A., Gupta, N., Wang, Z., Li, L., Fu, X., Wu, Y., & Mehrabian, M. (2016). Gut microbial metabolite tmao enhances platelet hyperreactivity and thrombosis risk. Cell, 165, 111-124.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Toros University Journal of Food, Nutrition and Gastronomy

Downloads

Download data is not yet available.