Algae as an alternative and sustainable food source
PDF (Türkçe)

Keywords

Algae
algal oil
functional food
sustainable food
ω-3 fatty acid

How to Cite

Şirinyıldız, D. D., & Yorulmaz, A. (2022). Algae as an alternative and sustainable food source. Toros University Journal of Food, Nutrition and Gastronomy, 1(1), 101–117. https://doi.org/10.58625/jfng-1935

Abstract

Algae are known as cell factories that can convert sunlight, water and carbon dioxide into biomass. Algae, commonly classified by their size (microalgae and macroalgae), are heterogeneous groups of organisms that can vary greatly. Algae contain high amounts of lipid (20-80%), protein (39-71%) and dietary fiber depending on species, the region where it grows, the season, the way of harvesting, storage conditions and food processing techniques. Moreover, due to their there are sterol, vitamin, pigment, α-tocopherol, β-carotene, glutathione, ascorbic acid, flavonoids, hydroquinones, phycocyanins, proline, phenolic compounds, polyamines and polyunsaturated fatty acids (ω-3 fatty acids) contents, they are considered as good food sources and are used in the production of functional food. Thanks to these valuable bioactive components, algae are thought to have antioxidant, antimicrobial, anti inflammatory and anticarcinogenic effects. The country with the highest consumption of algae, which is a part of the human diet for many years, is Japan. China and Indonesia lead the way in algae production. In addition to its use as food, algae is preferred as a raw material in the production of food supplements, animal feed, in the cosmetics and pharmaceutical industries, and in the production of bioenergy and biofuels. Algae are also used in greenhouse gas emission reduction and biological remediation applications, as well as their usage as nitrogen-fixing biofertilizers. In this study; information about the composition, properties, classification, production and harvesting of algae as well as algal oil is given. The aim of the study is to draw attention to a resource that is sustainable, alternative, innovative and has a high potential for better evaluation and to provide information about the introduction of algae as a source of ω-3 and the inclusion of foods enriched with the use of algae in the human diet as supplements.

https://doi.org/10.58625/jfng-1935
PDF (Türkçe)

References

Abdul, Q.A., Choı, R.J., Jung, H.A., & Choı, J.S., (2016). Health benefit of fucosterol from marine algae: A review. Journal of the Science of Food and Agriculture. 96, 1856-1866.

Abubakar, L.U., Mutıe, A.M., & Kenya, E.U. (2012). Characterization of algae oil (oilgae) and ıts potential as biofuel in Kenya. Journal of Applied Phytotechnology in Environmental Sanitation. 1, 147-153.

Achour, H. Y., Doumandjı, A., Sadı, S., & Saadı, S. (2014). Evaluation of nutritional and sensory properties of bread enriched with spirulina. Ann Food Sci Technol. 15, 270-5.

Agustını, T. W., Maâ, W. F., Wıdayat, W., Suzery, M., Hadıyanto, H., & Benjakul, S. (2016). Application of Spirulina platensis on ıce cream and soft cheese with respect to their nutritional and sensory perspectives. Jurnal Teknologi. 78, 4-2.

Ak, B., Avsaroglu, E., Isık, O., Ozyurt, G., Kafkas, E., & Etyemez, M. (2016). Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis. Int. J. Eng. Res. Appl. 6(9).

Akyıl, S., İlter, I., Koç, M., & Kaymak-Ertekin, F. (2016). Alglerden elde edilen yüksek değerlikli bileşiklerin biyoaktif/ biyolojik uygulama alanları. Academic Food Journal/ Akademik Gıda. 14.

Almeıda, L. M. R., Da Sılva Cruz, L. F., Machado, B. A. S., Nunes, I. L., Costa, J. A. V., De Souza Ferreıra, E., & De Souza, C. O. (2021). Effect of the addition of Spirulina sp. biomass on the development and characterization of functional food. Algal Research. 58, 102387.

Arterburn, L.M., Oken, H.A., Hall, E.B., Hamersley, J., Kuratko, C.N., & Hoffman, J.P. (2008). Algal-oil capsules and cooked salmon: nutritionally equivalent sources of docosahexaenoic acid. Journal of the American Dietetic Association. 108, 1204-1209.

Atik, D. S., Gürbüz, B., Bölük, E., & Palabıyık, İ. (2021). Development of vegan kefir fortified with Spirulina platensis. Food Bioscience. 42, 101050.

Aydın, G. (2014). Alg yağından lipaz katalizli biyodizel üretimi. Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü.

Aydoğdu, H. (2019). Alg yağı ve alg yağı esterlerinin poli (laktik asit) için plastikleştirici olarak kullanılabilme potansiyelinin incelenmesi. Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü.

Balasubramanian, S., Allen, J.D. Kanıtkar, A., & Boldor, D. (2011). Oil extraction from Scenedesmus obliquus using a continuous microwave system–design, optimization, and quality characterization. Bioresource Technology. 102, 3396-3403.

Batısta, A. P., Nıccolaı, A., Bursıc, I., Sousa, I., Raymundo, A., Rodolfı, L., & Tredici, M. R. (2019). Microalgae as functional ıngredients in savory food products: application to wheat crackers. Foods. 8(12), 611.

Becker, E.W. (2007). Micro-algae as a source of protein. Biotechnology Advances. 25, 207-210.

Bellou, S., & Aggelıs, G. (2013). Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. Journal of Biotechnology. 164, 318-329.

Blouın, N., Calder, B.L., Perkıns, B., & Brawley, S.H. (2006). Sensory and fatty acid analyses of two atlantic species of porphyra (rhodophyta). Journal of Applied Phycology. 18, 79.

Cebi, N., Yılmaz, M.T., Sagdıc, O., Yuce, H., & Yelboga, E. (2017). Prediction of peroxide value in omega-3 rich microalgae oil by ATR-FTIR spectroscopy combined with chemometrics. Food Chemistry. 225, 188-196.

Chee, C.P., Gallaher, J.J., Djordjevıc, D., Farajı, H., Mcclements, D.J., Decker, E.A., & Coupland, J. N. (2005). Chemical and sensory analysis of strawberry flavoured yogurt supplemented with an algae oil emulsion. Journal of Dairy Research. 72, 311-316.

Chee, C.P., Djordjevıc, D., Farajı, H., Decker, E.A., Hollender, R., Mcclements, D. J., & Coupland, J.N. (2007). Sensory properties of vanilla and strawberry flavored ıce cream supplemented with omega-3 fatty acids. Milchwissenschaft. 62, 66-69.

Chen, X.W., Chen, Y.J., Wang, J.M., Guo, J., Yin, S.W., & Yang, X.Q. (2016). Phytosterol structured algae oil nanoemulsions and powders: ımproving antioxidant and flavor properties. Food & Function. 7, 3694-3702.

Chıstı, Y. (2007). Biodiesel from microalgae. Biotechnology advances. 25, 294-306.

Cofrades, S., López-López, I., Solas, M.T., Bravo, L., & Jıménez-Colmenero, F. (2008). Influence of different types and proportions of added edible seaweeds on characteristics of low-salt gel/emulsion meat systems. Meat Science. 79, 767-776.

Cofrades, S., López-López, I., Ruız-Capıllas, C., Trıkı, M., & Jıménez-Colmenero, F. (2011). Quality characteristics of low-salt restructured poultry with microbial transglutaminase and seaweed. Meat Science. 87(4), 373-380.

Çelekli, A., Alslibi, Z. A., & Üseyin Bozkurt, H. (2019). Influence of ıncorporated spirulina platensis on the growth of microflora and physicochemical properties of ayran as a functional food. Algal Research. 44, 101710.

Da Sılva, S. C., Fernandes, I. P., Barros, L., Fernandes, Â., Alves, M. J., Calhelha, R. C., & Barreıro, M. F. (2019). Spray-dried spirulina platensis as an effective ıngredient to ımprove yogurt formulations: testing different encapsulating solutions. Journal of Functional Foods. 60, 103427.

De Cırıano, M.G.I., Rehecho, S., Calvo, M.I., Cavero, R.Y., Navarro, Í., Astıasarán, I., & Ansorena, D. (2010). Effect of lyophilized water extracts of Melissa officinalis on the stability of algae and linseed oil-in-water emulsion to be used as a functional ıngredient in meat products. Meat Science. 85, 373-377.

De Marco, E. R., Steffolanı, M. E., Martınez, C. S., & León, A. E. (2014). Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT-Food Science and Technology. 58(1), 102-108.

Demirbas, A. & Demirbas, M.F. (2011). Importance of algae oil as a source of biodiesel. Energy Conversion and Management. 52, 163-170.

Demiriz, T. (2008). Bazı alglerin antibakteriyal etkileri. Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü.

Draget, K. I., Smidsrod, O., & Skjak‐Bræk, G. (2005). Alginates from algae. biopolymers online: biology, chemistry, biotechnology. Applications. 6.

El-Baz, F. K., Abdo, S. M., & Husseın, A. M. (2017). Microalgae Dunaliella salina for use as food supplement to ımprove pasta quality. Int. J. Pharm. Sci. Rev. Res. 46(2), 45-51.

Eleren, S.Ç., & Öner, B. (2019). Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: mikroalgler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 25, 304-319.

Fahy, E., Subramanıam, S., Brown, H.A., Glass, C.K., Merrıll Jr, A.H., Murphy, R. C., & Shımızu, T. (2005). A comprehensive classification system for lipids. European Journal of Lipid Science and Technology. 107, 337-364.

Fradıque, M., Batısta, A. P., Nunes, M. C., Gouveıa, L., Bandarra, N. M., & Raymundo, A. (2010). Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. part 1: preparation and evaluation. Journal of the Science of Food and Agriculture. 90(10), 1656-1664.

Francavilla, M., Trotta, P., & Luque, R. (2010). Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application. Bioresource Technology. 101, 4144- 4150.

Graeve, M., Kattner, G., Wıencke, C., & Karsten, U. (2002). Fatty acid composition of arctic and antarctic macroalgae: ındicator of phylogenetic and trophic relationships. Marine Ecology Progress Series. 231, 67-74.

Grahl, S., Strack, M., Menschıng, A., & Morleın, D. (2020). Alternative protein sources in western diets: food product development and consumer acceptance of spirulina-filled pasta. Food Quality and Preference. 84, 103933.

Grattan, B.J. (2013). Plant sterols as anticancer nutrients: evidence for their role in breast cancer. Nutrients. 5, 359-387.

Gubelıt, Y.I., Makhutova, O.N., Sushchık, N.N., Kolmakova, A.A., Kalachova, G.S., & Gladyshev, M.I. (2015). Fatty acid and elemental composition of littoral “green tide” algae from the gulf of Finland, the Baltic Sea. Journal of Applied Phycology. 27, 375-386.

Hall, A. C., Faırclough, A. C., Mahadevan, K. & Paxman, J. R., (2012). Ascophyllum nodosum enriched bread reduces subsequent energy ıntake with no effect on post-prandial glucose and cholesterol in healthy, overweight males. A pilot study. Appetite. 58(1), 379-386.

Holdt, S.L., & Kraan, S. (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology. 23, 543-597.

Honold, P. J., Jacobsen, C., Jónsdóttır, R., Krıstınsson, H. G., & Hermund, D. B. (2016). Potential seaweed-based food ıngredients to ınhibit lipid oxidation in fish-oil-enriched mayonnaise. European Food Research and Technology. 242(4), 571-584.

Huımın, X., Lın, L., Shılın, G., Elfalleh, W., Shenghua, H., Qınghaı, S., & Yıng, M. (2014). Formation, stability, and properties of an algae oil emulsion for application in UHT milk. Food and Bioprocess Technology. 7(2), 567-574.

İlhan, E., Büyükizgi, A., & Ermiş, E. (2020). Mavi-yeşil alg Spirulina platensis’ in buğday ekmeğinde kimyasal, duyusal ve antifungal etkisi. Gıda ve Yem Bilimi Teknolojisi Dergisi. (24), 22-29.

Jez, S., Spınellı, D., Fıerro, A., Dıbenedetto, A., Aresta, M., Busı, E., & Basosı, R. (2017). Comparative life cycle assessment study on environmental ımpact of oil production from micro-algae and terrestrial oilseed crops. Bioresource Technology. 239, 266-275.

Jıang, Y., & Chen, F. (2000). Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii. Journal of the American Oil Chemists' Society. 77, 613-617.

Joshı, S. M., Bera, M. B., & Panesar, P. S. (2014). Extrusion cooking of maize/spirulina mixture: factors affecting expanded product characteristics and sensory quality. Journal of Food Processing and Preservation. 38(2), 655-664.

Kaynakcı, E. (2012). Sağlıklı et ürünlerinin geliştirilmesi amacıyla alternatif yağ kaynaklarının sosis model sisteminde uygulama imkânlarının araştırılması. Doktora Tezi, Süleymen Demirel Üniversitesi Fen Bilimleri Enstitüsü

Kım, H. W., Choı, J. H., Choı, Y. S., Han, D. J., Kım, H. Y., Lee, M. A., & Kım, C. J. (2010). Effects of sea tangle (lamina japonica) powder on quality characteristics of breakfast sausages. Food Science of Animal Resources. 30(1), 55-61.

Krıs-Etherton, P.M., Harrıs, W. S., & Appel, L.J. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 106, 2747-2757.

Lane, K. E., Lı, W., Smıth, C., & Derbyshıre, E. (2014). The bioavailability of an omega‐3‐rich algal oil is ımproved by nanoemulsion technology using yogurt as a food vehicle. International Journal of Food Science & Technology. 49(5), 1264-1271.

Leal, M.C., Munro, M.H., Blunt, J.W., Puga, J., Jesus, B., Calado, R., & Madeıra, C. (2013). Biogeography and biodiscovery hotspots of macroalgal marine natural products. Natural Product Reports. 30, 1380-1390.

Lenıhan-Geels, G., Bıshop, K.S., & Ferguson, L.R. (2013). Alternative sources of omega-3 fats: can we find a sustainable substitute for fish?. Nutrients. 5, 1301-1315.

López-López, I., Cofrades, S., Yakan, A., Solas, M. T., & Jıménez-Colmenero, F. (2010). Frozen storage characteristics of low-salt and low-fat beef patties as affected by wakame addition and replacing pork backfat with olive oil-in-water emulsion. Food Research International. 43(5), 1244-1254.

Lucas, B. F., De Moraıs, M. G., Santos, T. D., & Costa, J. A. V. (2018). Spirulina for snack enrichment: nutritional, physical and sensory evaluations. LWT. 90, 270-276.

Lucas, B. F., Rosa, A. P. C. D., Carvalho, L. F. D., Moraıs, M. G. D., Santos, T. D., & Costa, J. A. V. (2019). Snack bars enriched with spirulina for schoolchildren nutrition. Food Science and Technology. 40, 146-152.

Makrı, A., Bellou, S., Bırkou, M., Papatrehas, K., Dolapsakıs, N.P., Bokas, D., & Aggelıs, G. (2011). Lipid synthesized by micro‐algae grown in laboratory‐and ındustrial‐scale bioreactors. Engineering in Life Sciences. 11, 52-58.

Mercer, P., & Armenta, R.E. (2011). Developments in oil extraction from microalgae. European Journal of Lipid Science and Technology. 113, 539-547.

Mccauley, J.I., Meyer, B.J., Wınberg, P.C., Ranson, M., & Skropeta, D. (2015). Selecting Australian marine macroalgae based on the fatty acid composition and anti-ınflammatory activity. Journal of Applied Phycology. 27, 2111-2121.

Morsy, O. M., Sharoba, A. M., El-Desouky, A. I., Bahlol, H. E. M., & Abd El Mawla, E. M. (2014). Production and evaluation of some extruded food products using spirulina algae. Annals of Agricultural Science, Moshtohor. 52(4), 329-342.

Mourıtsen, O. G., Wıllıams, L., Bjerregaard, R., & Duelund, L. (2012). Seaweeds for umami flavour in the New Nordic cuisine. Flavour. 1(1), 1-12.

Mwangı, J.K., Lee, W.J., Whang, L.M., Wu, T.S., Chen, W.H., Chang, J.S., & Chen, C.L. (2015). Microalgae oil: algae cultivation and harvest, algae residue torrefaction and diesel engine emissions tests. Aerosol and Air Quality Research. 15, 81-98.

Nıccolaı, A., Bažec, K., Rodolfı, L., Bıondı, N., Zlatıć, E., Jamnık, P., & Tredıcı, M. R. (2020). Lactic acid fermentation of Arthrospira platensis (spirulina) in a vegetal soybean drink for developing new functional lactose-free beverages. Frontiers in Microbiology. 11, 560684.

Onacık-Gur, S., Żbıkowska, A., & Majewska, B. (2018). Effect of Spirulina (Spirulina platensis) addition on textural and quality properties of cookies. Italian Journal of Food Science. 30(1).

Özçimen, D. (2018). Chlorella protothecoides Mikroalg yağının Botrytis cinerea ve Aspergillus niger küflerine karşı antifungal etkisinin incelenmesi. Journal of Tekirdag Agricultural Faculty. 15, 45-52.

Özyurt, G., Uslu, L., Yuvka, I., Gökdoğan, S., Atci, G., Ak, B., & Işik, O. (2015). Evaluation of the cooking quality characteristics of pasta enriched with Spirulina platensis. Journal of Food Quality. 38(4), 268-272.

Patıl, V., Reıtan, K.I., Knutsen, G., Mortensen, L.M., Källqvist, T., Olsen, E., & Gıslerød, H.R. (2005). Microalgae as source of polyunsaturated fatty acids for aquaculture. Plant Biology. 6, 57-65.

Paul Abıshek, M., Patel, J., & Prem Rajan, A. (2014). Algae oil: a sustainable renewable fuel of future. Biotechnology Research International.

Pereıra, C.M., Nunes, C.F., Zambottı-Vıllela, L., Streıt, N.M., Dıas, D., Pınto, E., & Colepıcolo, P. (2017).

Extraction of sterols in brown macroalgae from antarctica and their ıdentification by liquid chromatography coupled with tandem mass spectrometry. Journal of Applied Phycology. 29, 751-757.

Pereıra, T., Barroso, S., Mendes, S., & Gıl, M. M. (2020). Stability, kinetics, and application study of phycobiliprotein pigments extracted from red algae Gracilaria gracilis. Journal of Food Science. 85(10), 3400-3405.

Pragya, N., Pandey, K.K., & Sahoo, P.K. (2013). A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable and Sustainable Energy Reviews. 24, 159-171.

Rajmohan, D., & Bellmer, D. (2019). Characterization of spirulina-alginate beads formed using ıonic gelation. International Journal of Food Science.

Rodrıguez De Marco, E., Steffolanı, M. E., Martınez, M., & León, A. E. (2018). The use of nannochloropsis sp. as a source of omega‐3 fatty acids in dry pasta: chemical, technological and sensory evaluation. International Journal of Food Science & Technology. 53(2), 499-507.

Salagean, C. D., Pop, C., Catrınoı, M., & Nagy, M. (2015). Influence of the brown marine algae on the physicochemical and sensory characteristcs of the sausages. Bulletin UASVM Food Science and Technology. 72(2), 193-199.

Santos, T. D., De Freıtas, B. C. B., Moreıra, J. B., Zanfonato, K., & Costa, J. A. V. (2016). development of powdered food with the addition of spirulina for food supplementation of the elderly population. Innovative Food Science & Emerging Technologies. 37, 216-220.

Savaghebı, D., Ghaderı-Ghahfarokhı, M., & Barzegar, M. (2021). Encapsulation of sargassum boveanum algae extract in nano-liposomes: application in functional mayonnaise production. Food and Bioprocess Technology. 14(7), 1311-1325.

Schlagermann, P., Gottlıcher, G., Dıllschneıder, R., Rosello-Sastre, R., & Posten, C. (2012). Composition of algal oil and ıts potential as biofuel. Journal of Combustion. 2012.

Schmıd, M., Guıhéneuf, F., & Stengel, D.B. (2014). Fatty acid contents and profiles of 16 macroalgae collected from the ırish coast at two seasons. Journal of Applied Phycology. 26, 451-463.

Shah, S., Sharma, A., & Gupta, M.N. (2005). Extraction of oil from Jatropha curcas L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction. Bioresource Technology. 96, 121-123.

Shın, Y. J., Song, H. Y., Seo, Y. B., & Song, K. B. (2012). Preparation of red algae film containing grapefruit seed extract and application for the packaging of cheese and bacon. Food Science and Biotechnology. 21(1), 225-231.

Song, N. B., Song, H. Y., Jo, W. S., & Song, K. B. (2013). Physical properties of a composite film containing sunflower seed meal protein and ıts application in packaging smoked duck meat. Journal of Food Engineering. 116(4), 789-795.

Szentmıhályı, K., Vınkler, P., Lakatos, B., Illés, V., & Then, M. (2002). Rose Hip (Rosa canina L.) Oil obtained from waste hip seeds by different extraction methods. Bioresource Technology. 82, 195-201

Takahata, K., Monobe, K.I., Tada, M., & Weber, P.C. (1998). The benefits and risks of n-3 polyunsaturated fatty acids. Bioscience, Biotechnology and Biochemistry. 62, 2079-2085.

Uchıda, M., Kurushıma, H., Hıdeshıma, N., Arakı, T., Ishıhara, K., Murata, Y., & Ishida, N. (2018). Preparation and characterization of fermented seaweed sauce manufactured from low-quality nori (dried and fresh fronds of Pyropia yezoensis). Fisheries Science. 84(3), 589-596.

Uchıda, M., Kurushıma, H., Ishıhara, K., Murata, Y., Touhata, K., Ishıda, N., & Arakı, T. (2017). Characterization of fermented seaweed sauce prepared from nori (Pyropia yezoensis). Journal of Bioscience and Bioengineering. 123(3), 327-332.

Van Gınneken, V.J., Helsper, J.P., De Vısser, W., Van Keulen, H., & Brandenburg, W. A. (2011). Polyunsaturated fatty acids in various macroalgal species from north atlantic and tropical seas. Lipids in Health and Disease. 10, 104.

Volkman, J.K., Jeffrey, S.W., Nıchols, P.D., Rogers, G.I., & Garland, C.D. (1989). Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology. 128, 219-240.

Wells, M.L., Potın, P., Craıgıe, J.S., Raven, J.A., Merchant, S.S., Hellıwell, K.E., & Brawley, S.H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology. 29, 949-982.

Wıyarno, B., Yunus, R.M., & Mel, M. (2011). Extraction of algae oil from nannocloropsis sp.: a study of soxhlet and ultrasonic-assisted extractions. Journal of Applied Sciences. 11, 3607-3612.,

Yılmaz, A. (2019). Chlorella protothecoides Mikroalg yağının karakterizasyonu, biyoaktif özellikleri ve antifungal etkinliği. Academic Food Journal/Akademik GIDA. 17.

Zen, C. K., Tıepo, C. B. V., Da Sılva, R. V., Reınehr, C. O., Gutkoskı, L. C., Oro, T., & Colla, L. M. (2020). Development of functional pasta with microencapsulated spirulina: technological and sensorial effects. Journal of the Science of Food and Agriculture. 100(5), 2018-2026.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Toros University Journal of Food, Nutrition and Gastronomy

Downloads

Download data is not yet available.