Abstract
The Black Sea Region is home to many plants with the unique habitat. There is great interest in weeds in the region where many plants spread all over the world coexist. Many different weeds are included in the local dishes of the region and edible weeds have an important place in the eating habits of the local people. Many different edible weeds are included in the local dishes of the region and edible weeds are positioned in an important place in the eating habits of the local people. Edible weeds have an important role in human nutrition due to their phenolic compounds, essential oils, amino acids and peptides, organic acids, vitamins and minerals. Edible weeds have many bioactive properties such as antimicrobial, antioxidant, anticarcinogen and anti-inflammatory. In the food industry, edible weeds are an alternative raw material for clean label food production, thanks to the bioactive compounds in their matrices and their bioactive properties. In many different locations of the Black Sea Region, Ornithogalum umbellatum L., Trachystemon orientalis (L.) G. Don, Petasites hybridus, Smilax excelsa L., Aegopodium podagraria L., Chaerophyllum byzantinum Boiss., Polygonum lapathifolium L., Stellaria media L., Falcaria vulgaris Bernh., Silene vulgaris and Coronopus squamatus are grown as weeds. These weeds growing in the region have been the subject of many studies and have been confirmed to have antimicrobial and antioxidant effects. It is predicted that it is possible to use natural food additives obtained from these plants to take part in the inhibition of pathogenic microorganisms in foods and to preserve the organoleptic properties of foods. It is thought that the natural food additives to be obtained from these plants will increase the food quality and extend the shelf life of the food, as well as enable the production of food enriched in nutrient content and provide continuity in the production of food enriched in the nutrient content, and will be an important source for sustainable production. The antioxidant effect of all plants except Polygonum lapathifolium L., which is one of the edible weeds examined within the scope of the study, makes it possible to use these plants as alternative raw materials in the production of natural preservatives. In addition, it was determined that Ornithogalum umbellatum L, Petasites hybridus, Aegopodium podagraria L, Chaerophyllum byzantinum Boiss, Stellaria media L and Falcaria vulgaris Bernh, which were examined, showed antimicrobial effects on selected foodborne pathogens representing Gram positive and Gram negative bacteria. It has been determined that the extracts obtained from Trachystemon orientalis (L) G Don and Stellaria media L plants have an inhibitory effect on molds that cause foodborne mycotoxicosis. The effect of Ornithogalum umbellatum L, Smilax excelsa L, Chaerophyllum Byzantinum Boiss and Falcaria vulgaris Bernh on the inhibition of yeasts that cause spoilage in foods is of great importance for food quality. Confirmation of the antimicrobial effects of the examined plants is important in terms of gaining commercial value and natural food production. Within the scope of the literature review, no study was found to determine the antimicrobial effect of Polygonum lapathifolium L, Silene vulgaris and Coronopus squamatus. However, the results obtained in the current studies on the determination of the total amount of phenolic substances and the determination of the antioxidant effect of Silene vulgaris and Coronopus squamatus suggest that these plants have antimicrobial effects.
The edible weeds that nature has offered us are suitable for meeting our daily nutritional needs due to the bioactive compounds they have. The introduction of these plants is important in terms of providing alternative raw materials to the food industry and increasing food diversity. In addition, integrating edible weeds into daily diets expands the nutritional spectrum, allowing the consumption of many plant-derived bioactive compounds. Considering the consumption patterns of edible weeds that have no commercial value, it is understood that it is possible to use it in the production of ready-made food, as well as being used as a raw material in the production of natural food additives and pharmacology. It is thought that the industrial processing of these weeds will contribute to the national income on a large scale.
In folk medicine, weeds are used in the treatment of many different diseases. It has been confirmed as a result of researches that many different edible wild herbs grown in the Black Sea region are used in the treatment of infections, pain, digestive and respiratory system diseases throughout history. Pharmacological studies on edible weeds growing in the region show that the examined plants can also be important sources for the pharmaceutical industry and can be integrated into many treatment methods in modern medicine. Especially phenolic compounds, which are found in high amounts in the matrix of edible weeds, make it possible to use these plants or their extracts in the treatment of cancer, diabetes, obesity and cardiovascular diseases.
It was described that Trachystemon orientalis (L.) G. Don and Stellaria media L., among the edible weeds examined within the scope of the study, showed antidiabetic and antiobesity properties. Smilax excelsa L., Aegopodium podagraria L. and Falcaria vulgaris Bernh plants are often preferred for the treatment of gastrointestinal tract infections due to their anti-inflammatory effects. It has been observed that compounds obtained from different parts of Petasites hybridus plant are integrated into existing treatment methods due to their promising results in allergic rhinitis and migraine prophylaxis. In addition, positive effects of Petasites hybridus and Smilax excelsa L. plants on cancer treatment were determined. The determination that Petasites hybridus has a high specific effect on breast tumor cells and a low effect on non-cancerous cells shows that root extracts obtained from the plant can be an alternative to current treatment methods.
It has been determined that the weeds examined within the scope of the study have many different bioactive properties. In the literature review, no study was found on the production of natural preservatives from the weeds examined. It is thought that this review study may create a new field of study for researchers interested in plant-derived natural antimicrobial and antioxidant agents. Although it has an important place in the nutritional habits of the people of the region, studies on these edible weeds, which do not have commercial value in national platforms, in pharmacology and in the food industry, are continued and it is aimed to contribute to the national income.
References
Mirza, S. K., Asema, U. K., & Kasim, S. S. (2017). To study the harmful effects of food preservatives on human health. Medicinal Chemistry & Drug Discovery, 2, 610-616.
Corbo, M. R., Bevilacqua, A., Campaniello, D., D’Amato, D., Speranza, B., & Sinigaglia, M. (2009). Prolonging microbial shelf life of foods through the use of natural compounds and non‐thermal approaches–a review. International Journal of Food Science & Technology, 44(2), 223-241. https://doi.org/10.1111/j.1365-2621.2008.01883.x.
Liu, X., Li, X., Bai, Y., Zhou, X., Chen, L., Qiu, C., Lu, C., Jin, Z., Long, J., & Xie, Z. (2023). Natural antimicrobial oligosaccharides in the food industry. International Journal of Food Microbiology. 386. https://doi.org/10.1016/j.ijfoodmicro.2022.110021
Salamci, E., Kordali, S., Kotan, R., Cakir, A., & Kaya, Y. (2007). Chemical compositions, antimicrobial and herbicidal effects of essential oils isolated from Turkish Tanacetum aucheranum and Tanacetum chiliophyllum var. chiliophyllum. Biochemical Systematics and Ecology, 35(9), 569-581. https://doi.org/10.1016/j.bse.2007.03.012
Calo, J. R., Crandall, P. G., O'Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems–A review. Food Control, 54, 111-119. https://doi.org/10.1016/j.foodcont.2014.12.040
Sharma, S., Barkauskaite, S., Jaiswal, A. K., & Jaiswal, S. (2021). Essential oils as additives in active food packaging. Food Chemistry, 343. https://doi.org/10.1016/j.foodchem.2020.128403
Baindara, P., & Mandal, S. M. (2022). Plant-derived antimicrobial peptides: Novel preservatives for the food ındustry. Foods, 11(16). https://doi.org/10.3390/foods11162415
Aslan, Z. (2022). Türkiye’deki bazı Ornıthogalum l. (Subgenus ornıthogalum baker) (asparagaceae) türlerinin polen morfolojisi [Yüksek Lisans Tezi].
Demirkol, M., Çelik, Ö. F., & Tarakçı, Z. (2017). Ordu ilinde yetişen Sakarca (Ornithogalum umbellatum) bitkisinin antibakteriyel aktivitesi ve toplam fenolik madde içeriği. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 7(2), 312-318.
Demir, E., Sürmen, B., & Kutbay, H. G. (2017). Salıpazarı ve çevresinde (Samsun/Türkiye) doğal olarak yetişen bitkilerin etnobotanik özellikleri, Karadeniz Fen Bilimleri Dergisi, 7(2), 68-78. https://doi.org/10.31466/kfbd.321940
Renda, G., Özel, A., Akyüz-Turumtay, E., Barut, B., Korkmaz, B., Çol-Ayvaz, M., & Demir, A. (2019). Comparison of phenolic profiles and antioxidant activity of three Ornithogalum L. species. Turkish Journal of Biochemistry, 44(3), 299-306. https://doi.org/10.1515/tjb-2018-0011
Aydin S. (2020). Total phenolic content, antioxidant, antibacterial and antifungal activities, FT-IR analyses of Brassica oleracea L. var. acephala and Ornithogalum umbellatum L. Genetika, 52(1), 229-244. https://doi.org/10.2298/GENSR2001229A
Akçin, Ö., Kandemir, N., & Akçin, Y. 2004. A morphological and anatomical study on a medicinal and edible plant Trachystemon orientalis (L.) G.Don (Boraginaceae) in the black sea region. Turkish Journal of Botany. 28(4), 435-442.
Özbakır-Özer. M., & Kibar, B. (2018). Orta Karadeniz bölgesi’nden toplanan Kaldırayak (Trachystemon orientalis (L.) G. Don.) genotiplerinin morfolojik karakterizasyonu. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 4(2), 178–186. https://doi.org/10.24180/ijaws.424603
Ayhan, B. S., Yalçın, E., Çavuşoğlu, K., & Acar, A. (2019). Antidiabetic potential and multi-biological activities of Trachystemon orientalis extracts. Journal of Food Measurement and Characterization, 13, 2887–2893. https://doi.org/10.1007/s11694-019-00209-1
Sargin, A. S. (2021). Plants used against obesity in Turkish folk medicine: A review. Journal of Ethnopharmacology, 270. https://doi.org/10.1016/j.jep.2021.113841
Uzun, E., Sariyar, G., Adsersan, A., Karak, B., Ötük, G., Oktayoğlu, E., & Pirildar, S. (2004). Traditional medicine in Sakarya province (Turkey) and antimicrobial activities of selected species. Journal of Ethnopharmacology, 95(2–3), 287-296. https://doi.org/10.1016/j.jep.2004.07.013
Bıyık, B., Yılmaz-Sarıaltın, S., Gökbulut, A., Çoban, T., & Çoşkun, M. (2022). Trachystemon orientalis (L.) G. Don as a valuable source of rosmarinic acid: biological activities and HPLC profiles. Turkish Journal of Pharmaceutical Sciences, https://doi.org/10.4274/tjps.galenos.2022.1426
Onaran, A., & Yılar, M. (2012). Antifungal activity of Trachystemon orientalis L. aqueous extracts against plant pathogens. Journal of Food, Agriculture & Environment, 10 (3&4), 287-291. https://doi.org/10.13140/RG.2.1.1368.1765
Hai, P., Gao, Y., Xiao, C.G., Jiang, X.J., Li, X. M., Yang, W.Q., Li, R.T. & Wang, F. (2018). New sesquiterpenoids from Petasites japonicus and Petasites tricholobus. Phytochemistry Letters, 23, 41-45. https://doi.org/10.1016/j.phytol.2017.10.008
Johnston, J. (2001). Petasites hybridus monograph. Alternative Medicine Review. 6, 207-209.
Avula, B., Wang, Y., Wang, M., Smillie, T., & Khan, I., 2012. Simultaneous determination of sesquiterpenes and pyrrolizidine alkaloids from the rhizomes of Petasites hybridus (L.) G.M. et Sch. and dietary supplements using UPLC-UV and HPLC-TOF-MS methods. Journal of Pharmaceutical and Biomedical Analysis, 70, 53-63. https://doi.org/10.1016/j.jpba.2012.05.021
Toman, J. (1972). A taxonomic survey of the genera Petasites and Endocellion. Folia Geobotanica et Phytotaxonomica, 7, 381-406.
Melikoğlu-Akın, A. 2021. Giresun Mutfağında Yabani Bitkiler, Asya Studies, 5 (18), 139-152.
Kulinowski, L., Luca, S. V., Minceva, M., & Skalicka-Woźniak, K. (2022). A review on the ethnobotany, phytochemistry, pharmacology and toxicology of butterbur species (Petasites L.). Journal of Ethnopharmacology, 293, https://doi.org/10.1016/j.jep.2022.115263
Khaleghi, F., Din, L., Charati, F., Yaacob, W., Khalilzadeh., Skelton B. ve Makha M. 2011. A new bioactive compound from the roots of Petasites hybridus. Phytochemistry Letters, 4(3), 254-258. https://doi.org/10.1016/j.phytol.2011.04.009
Pothmann, R., ve Danesch, U. 2005. Migraine prevention in children and adolescents: resultsof an open study with a special butterbur root extract. Headache. 45(3), 196–203.
Blosa, M., Uricher, J., Nebel, S., Zahner, C., Butterweck, V. ve Drewe, J., 2021. Treatment of early allergic and late ınflammatory symptoms of allergic rhinitis with petasites hybridus leaf extract (ze 339): results of a noninterventional observational study in Switzerland, Pharmaceuticals, 14(3), 180-193. https://doi.org/10.3390/ph14030180
Tzovena, R., Uzunova, V., Stoyanova, T., Borisova, B., Momchilova, A., Pankov, R. ve Maslenkova, L. 2021. Anti-cancer effect of Petasites hybridus L. (Butterbur) root extract on breast cancer cell lines. Biotechnology & Biotechnological Equipment, 35 (1), 853-861. https://doi.org/10.1080/13102818.2021.1932594
Urda, l., Kreuter, M. H., Drewe, J., Booen, G., Butterweck, V. ve Klimkait, T. 2022. The Petasites hybridus CO2 extract (Ze 339) blocks SARS-CoV-2 replication in vitro. Viruses, 14 (1). https://doi.org/ 10.3390/v14010106
Davijani, N.Z., Kia-Kojoori, R., Abdolmohammadi, S. ve Sadegh-Samiei, S., 2021. Employing of Fe3O4/CuO/ZnO@MWCNT MNCs in the solvent-free synthesis of new cyanopyrroloazepine derivatives and investigation of biological activity. Nature Reviews Molecular Cell Biology. 26(4), 2121-2134. https://doi.org/ 10.1007/s11030-021-10319-y
Hossaini, Z., Tabersaei, N., Khandan, S., Valipour, P. ve Ghorchibeigi, M., 2020. ZnO/Ag/Fe3O4 nanoparticles supported on carbon nanotubes employing Petasites hybridus rhizome water extract: A novel organometallic nanocatalyst for the synthesis of new naphthyridines. Applied Organometallic Chemistry, 35 (3). https://doi.org/10.1002/aoc.6114
Amiri, S.A., Hossaini, Z. ve Azizi, Z., 2021. Synthesis and investigation of antioxidant and antimicrobial activity of new pyrazinopyrroloazepine derivatives using Fe3O4/CuO/ZnO@MWCNT MNCs as organometallic nanocatalyst by new MCRs. Applied Organometallic Chemistry, 36(4). https://doi.org/10.1002/aoc.6573
Shirangi, H.S., Moradi, A.V., Golsefidi, M.A., Hossaini, Z. ve Jalilian, H.R. 2021. Fe3O4/CuO/ZnO@MWCNT MNCs as an efficient organometallic nanocatalyst promoted synthesis of new 1,2,4-triazolpyrimidoazepine derivatives: Investigation of antioxidant and antimicrobial activity. Applied Organometallic Chemistry, 36 (1). https://doi.org/10.1002/aocc.6460
Gündüz, M., Karabıyıklı-Çiçek, Ş., & Topuz, S. (2023). Extraction and optimization of phenolic compounds from butterbur plant (Petasites hybridus) by ultrasound-assisted extraction and determination of antioxidant and antimicrobial activity of butterbur extracts. Journal of Applied Research on Medicinal and Aromatic Plants, https://doi.org/10.1016/j.jarmap.2023.100491
Özsoy, N., Can, A., Yanardağ, R., & Akev, N. (2008). Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chemistry, 110 (3), 571-583. https://doi.org/10.1016/j.foodchem.2008.02.037
Khaligh, P., Salehi, P., Farimani, M. M., Ali-Asgari, S., Esmaeili, M. A., & Nejad-Ebrahimi, S. (2016). Bioactive compounds from Smilax excelsa L. Journal of the Iranian Chemical Society, 13, 1055-1059. https://doi.org/10.1007/s13738-016-0819-9
Yılmaz-Sarıaltın, S., Çiçek-Polat, D., & Yalçın, C. Ö. (2023). Cytotoxic and antioxidant activities and phytochemical analysis of Smilax excelsa L. and Aegopodium podagraria L. Food Bioscience, 52. https://doi.org/10.1016/j.fbio.2023.102359
Wu, L. S., Wang, X, J., Wang, H., Yang, H. W., Jia, A. Q., & Ding, Q. (2010). Cytotoxic polyphenols against breast tumor cell in Smilax china L. Journal of Ethnopharmacology, 130(3), 460-464. https://doi.org/10.1016/j.jep.2010.05.032.
Demir, E. (2023). The fatty acıd composıtıon, phytochemıcals and antıoxıdant potentıal of wıld edıble Smilax excelsa L.shoots. Acta Scientiarum Polonorum Hortorum Cultus, 22 (1), 27–35. https://doi.org/10.24326/asphc.2023.4566
Efe, E., Yalçın, E., & Çavuşoğlu, K. (2019). Antimutagenic and multi-biological activities of Smilax excelsa L. fruit extract, Cumhuriyet Science Journal, 40(2). 440-446. https://doi.org/10.17776/csj.513469
Jakubczyk, K., Janda, K., Styburski, D. ve Łukomska, A. (2020). Podagrycznik olasılığı ( Aegopodium podagraria L.)–botaniczna ve właściwości prozdro charakterystykakötü. Advances in Hygiene and Experimental Medicine, 74 28-35. https://doi.org/10.5604/01.3001.0013.8551
Łuczaj, Ł. (2008). Dziko rosnące rośliny jadalne w ankiecie Józefa Rostafińskiego z roku 1883. Wiadomości Botaniczne, 52(1/2), 39-50.
Kyrbassova, E. A., Baitasheva, G. U., Danilov, M. P., Dyuskalieva, G. U., Abdrassulova, Z. T., Adenova, B. E., & Saparov, A. (2018). Anatomical-morphological and phytochemical study of medicinal plant Aegopodium Podagraria L. growing in Kazakhstan. International Journal of Pharmaceutical Research, 10(4), 689-697.
Engelhardt, L., Pöhnl, T., & Neugart, S. (2022). Edible wild vegetables Urtica dioica L. and Aegopodium podagraria L.–antioxidants affected by processing. Plants, 11(20). https://doi.org/10.3390/plants11202710
Stefanovıc, O., Comıc, L., Stanojevıc, D., & Solujıc-Sukdolak, S. (2009). Antibacterial activity of Aegopodium podagraria L. extracts and interaction between extracts and antibiotics. Turkish Journal of Biology, 33(2), 145-150. https://doi.org/10.3906/biy-0810-21
Taskin, T., & Bitis, L. (2013). Antioxidant activity of Silene alba subsp. divaricata and Stellaria media subsp. media from Caryophyllaceae. Spatula DD-Peer Reviewed Journal on Complementary. Medicine and Drug Discovery, 3(1), 1-5. https://doi.org/ 10.5455/spatula.20130218124721
Beliaev, D. V., Yuorieva, N. O., Tereshonok, D. V., Tashlieva, I. I., Derevyagina, M. K., Meleshin, A. A., Rogozhin, E. A., & Kozlov, S. A. (2021). High resistance of potato to early blight is achieved by expression of the Pro-SmAMP1 gene for hevein-like antimicrobial peptides from common chickweed (Stellaria media). Plants, 10(7). https://doi.org/10.3390/plants10071395
Singh, R., Chaudhary, M., & Singh-Chauhan, E. (2022). Stellaria media Linn.: A comprehensive review highlights the nutritional, phytochemistry, and pharmacological activities. Journal of Herbmed Pharmacology, 11(3), 330-338. https://doi.org/ 10.34172/jhp.2022.38
Ganea, M., Teodorescu, A. G., Horvath, T., Hanga-Farcas, A., Csaba, N., Zdinca, M., ... & Dobjanschi, L. (2023). Characterızatıon ın terms of phytochemıcal content and medıcınal potentıal of the Stellarıa media plant extract. Pharmacophore, 14(1), 45-55. https://doi.org/10.51847/qfiILPQ13P
Singh B., & Yadav S. K. (2010). In vitro studies on antibacterial activity and phytochemical analysis of whole plant extracts of Stelleria media. International Journal of Phytomedicine, 2(3), 260-266.
Yildirim A. B., Karakas F. P., & Turker A. U. (2013). In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey. Asian Pacific Journal of Tropical Medicine, 6(8), 616-624. https://doi.org/10.1016/S1995-7645(13)60106-6
Rogozhin, E. A., Slezina, M. P., Slavokhotova, A. A., Istomina, E. A., Korostyleva, T. V., Smirnov, A. N., Grishin, E. V., Egorov, T. A., & Odintsova, T. I. (2015). A novel antifungal peptide from leaves of the weed Stellaria media L. Biochimie, 116, 125-132. https://doi.org/10.1016/j.biochi.2015.07.014
Gladis, T., & Pistrick, K. (2011). Chaerophyllum byzantinum Boiss. and Trachystemon orientalis (L.) G. Don—recently introduced from Turkish wild flora as new crop species among other interesting findings from immigrant gardens in western Germany. Genetic Resources and Crop Evolution, 58, 165–174. https://doi.org/10.1007/s10722-010-9608-y
Koca, I., Tekguler, B., & Yilmaz, V. A. (2018). The physical, chemical and antioxidant properties of the leafs of Chaerophyllum byzantinum Boiss. Plants. Indian Journal of Pharmaceutical Education and Research, 52(4), 124-127. https://doi.org/10.5530/ijper.52.4s.87
Özen, T. (2010). Antioxidant activity of wild edible plants in the Black Sea Region of Turkey. Grasas Y Aceıtes, 61(1), 86-94. https://doi.org/10.3989/gya.075509
Kürkçüoğlu, M., Başer, KHC, Işcan, G., Malyer, H., & Kaynak, G. (2006). Chaerophyllum byzantinum Boiss esansiyel yağının bileşimi ve antikandidal aktivitesi. Lezzet ve Koku Dergisi, 21(1), 115-117.
Bulbul, L., Mojumder, S. M., Uddin, J., & Tanni, S. (2013). Phytochemical and pharmacological evaluations of Polygonum lapathifolium stem extract for anthelmintic and antiemetic activity. International Current Pharmaceutical Journal, 2(3), 57-62. https://doi.org/10.3329/icpj.v2i3.13582
Sağıroğlu, M., Toksoy-Köseoğlu, S., & Turna, M. (2017). İkramiye vadisi (Sapanca/Sakarya/Türkiye) florasında bulunan tıbbi bitkiler. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 527-539. https://doi.org/ 10.16984/saufenbilder.292196
Keleş, O., Bakırel, T., Ener, S.,Aydın, H., & Alpınari K. (2001). Ratlarda Polygonum lapathifolium’un Antiinflamatuar ve Antipiretik Aktivitesi. Turkish Journal of Veterinary & Animal Sciences, 25, 623-62.
Sökmen, B. B., & Sağkal, Y. (2017). Elastaz aktivitesine giresun yöresindeki bazı yenilebilir bitkilerin farklı çözücülerdeki ekstrelerinin inhibisyon etkilerinin incelenmesi. Karadeniz Fen Bilimleri Dergisi, 7(2), 10-18. https://doi.org/10.31466/kfbd.311178
Smolarz, H. D. (2002). Flavonoids from Polygonum lapathifolium ssp.tomentosum, Pharmaceutical Biology, 40(5), 390-394.
Koca, İ., Hasbay, İ., & Bostancı, Ş. (2011). Samsun ve çevresinde sebze olarak kullanılan bazı yabani bitkiler ve tüketim şekilleri. Samsun Sempozyumu, https://doi.org/10.13140/RG.2.1.2866.7927
Shahsavari, S., Sarkar, S., Sen, D. J., & Mandal, S. K. (2022). Determination of the total antioxidant activity of methanolic extract of Falcaria vulgaris, Journal of Phytochemistry & Biochemistry, 1(1), 8-12. https://doi.org/10.34172/jbp.2022.3
Shafaghat, A. (2010). Free radical scavenging and antibacterial activities, and GC/MS analysis of essential oils from different parts of falcaria vulgaris from two regions. Natural Product Communications, 5(6), 981-984. https://doi.org/10.1177/1934578X1000500636
Hosseini, K., Jasori, S., Delazar, A., Asgharian, P., & Tarhriz, V. (2021). Phytochemical analysis and anticancer activity of Falcaria vulgaris Bernh growing in Moghan plain, northwest of Iran. BMC Complementary Medicine and Therapies, 21. https://doi.org/ 10.1186/s12906-021-03464-2
Yadegari, M., Khazaei, M., Hamzavi, Y., & Toloei, A. R. (2011). Antifertility effects of Falcaria vulgaris in female rat. Journal of Arak University of Medical Sciences, 14(2), 94-99.
Rouhi-Boroujeni, H., Asadi-Samani, M., & Moradi, M. T. (2016). A review of the medicinal plants effective on headache based on the ethnobotanical documents of Iran. Der Pharm Lett, 8(3), 37-42.
Shadvar, M. S., & Moradkhani, S. (2022). Chemical composition of the essential oils and antioxidant capacity evaluation of Echinophora platyloba DC. and Falcaria vulgaris Bernh. growing in Hamadan province of Iran. Journal of Medicinal Plants, 21(83), 19-34. https://doi.org/10.52547/jmp.21.83.19
Kumar, P., Kumar-Rana, P., Himshikha, Kumar-Singhal, V., & Gupta, R.C. (2014). Cytogeography and phenomenon of cytomixis in Silene vulgaris from cold regions of Northwest Himalayas (India). Plant Systematics and Evolution, 300, 831–842. https://doi.org/10.1007/s00606-013-0922-7
Zengin, G., Mahomoodally, M. F., Aktumsek, A., Ceylan, R., Uysal, S., Mocan, A., Yılmaz, M. A., Picot-Allanin, C. M. N., Ćirić, A., & Glamočlija, J. (2018). Functional constituents of six wild edible Silene species: A focus on their phytochemical profiles and bioactive properties. Food Bioscience, 23, 75-82. https://doi.org/10.1016/j.fbio.2018.03.010
Chandra, S., & Rawat, D. S. (2015). Medicinal plants of the family Caryophyllaceae: a review of ethno-medicinal uses and pharmacological properties. Integrative Medicine Research, 4(3), 123-131. https://doi.org/10.1016/j.imr.2015.06.004
Morales, P., Carvalho, A. M., Sánchez-Mata, M. C., Cámara, M., Molina, M., & Ferreira, I. C. (2012). Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genetic Resources and Crop Evolution, 59, 851-86. https://doi.org/10.1007/s10722-011-9726-1
Embaby, I. S., Mohhammed, A. R., Medhat, R. H., Mohamady, A. W., & Abdelhady, A. S. K. (2012). İsolatıon of flavonoıds and biological activitıes of coronopus squamatus. International Journal of Pharmacy And Pharmaceutical Sciences. 4(3), 124-129.
Elkhateeb, A., El-Shabrawy, M., Abdel-Rahman, R. F., Marzouk, M. M., El-Desoky, A. H., Abdel-Hameed, E. S., & Hussein, S. R., (2019). LC-MS-based metabolomic profiling of Lepidium coronopus water extract, anti-inflammatory and analgesic activities, and chemosystematic significance, Medicinal Chemistry Research, 28, 505–514. https://doi.org/10.1007/s00044-019-02309-5
Zengin-Kurt, B., Gazioğlu, I., Sevgi, E., & Sönmez, F. (2018). Anticholinesterase, antioxidant, antiaflatoxigenic activities of ten edible wild plants from Ordu area, Turkey. Iranian Journal of Pharmaceutical Research, 17(3), 1047–1056. https://doi.org/ 10.22037/IJPR.2018.2248
Marzouk, M. M., Al-Nowaihi, A. M., Kawashty, S. A., & Saleh, N. A. M., (2010). Chemosystematic studies on certain species of the family Brassicaceae (Cruciferae) in Egyp. Biochemical Systematics and Ecology, 38(4), 680-685. https://doi.org/10.1016/j.bse.2010.04.004
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Toros University Journal of Food, Nutrition and Gastronomy