The effect of Nigella Sativa (black cumin seed) on health
PDF (Türkçe)

Keywords

Antioxidant
black seed
oxidative stress
thymoquinone
Nigella Sativa

How to Cite

Aygün, S. B., & Karataş, E. (2024). The effect of Nigella Sativa (black cumin seed) on health. Toros University Journal of Food, Nutrition and Gastronomy, 3(1), 83–98. https://doi.org/10.58625/jfng-2477

Abstract

The Nigella Sativa plant has been used in various civilizations since ancient times and is believed to have positive health effects. Research on this plant provides evidence to support its health benefits. Nigella Sativa seeds and oil may have positive effects on many diseases such as oxidative stress, hypertension, epilepsy, fatty liver, asthma, arthritis. It is also thought to have anti-carcinogenic, anti-diabetic, antibacterial, anti-hepatotoxic, antifungal and other therapeutic effects. N. sativa is an annual flowering herb that grows mainly in Western Asia, the Mediterranean North Sea region and western-southern Europe. The flowers are white, pink, yellow or lavender in color and the fruits are capsules containing black seeds. The phytochemical composition of N. sativa varies depending on growing conditions, stage of maturity and processing methods. Components such as thymoquinone, flavonoids, alkaloids, tannins are the active phytochemical constituents of  N. Sativa may be effective in reducing oxidative stress through its thymoquinone and other phytochemical components. N. Sativa may be effective in reducing oxidative stress through its thymoquinone and other phytochemical components. Thymoquinone inhibits oxidative damage by interacting with free radicals and modulating multiple cellular signaling systems through its antioxidant effects. Moreover, the anti-inflammatory effects of Nigella Sativa and its regulation of cellular mechanisms may also play a role in reducing oxidative stress.

Purpose

The aim of this study was to review the literature on the effects of N. sativa on oxidative stress, diseases and health.

Methodology

The literature search was performed in Pubmed, ScienceDirect and Scopus databases using the words "Nigella Sativa", "Thymoquinone", "Antioxidant", "Antidiabetic", "Antidislipidemic", "Antiinflammatory". The inclusion criteria were that the language of publication was English, the purpose of the study was related to the effect of Nigella Sativa on health, and the full text was accessible.

Literature Review

  1. Sativa and TQ modulate multiple cellular signaling systems. Thus, it increases the expression of enzymatic antioxidants and non-enzymatic antioxidants, decreases various oxidative markers and shows antioxidant activity. Recent systemic review and meta-analysis studies also prove the antioxidant effect of N. Sativa.

Chronic elevation of blood glucose has been reported to promote oxidative stress through overproduction of reactive oxygen species (ROS). Excessive ROS levels lead to an increase in insulin resistance and β-cell dysfunction, contributing to the progression of diabetic complications. N. Sativa is thought to reduce the risk of complications and diseases caused by elevated blood glucose levels with its anti-inflammatory effects. In a study in diabetic injured rats, N. Sativa essential oil was found to increase the antioxidant capacity associated with the wound healing process by increasing GPx, SOD and CAT activities and GSH level. In another study, a significant decrease in fasting blood glucose, glucosylated hemoglobin (HbA1c) and insulin resistance, and a significant increase in TAC, SOD and glutathione levels were found in individuals given 2g/day N. Sativa supplementation for 1 year.

  1. Sativa is used in traditional medicine for the treatment and prevention of various diseases, including hyperlipidemia. Supplementation of N. Sativa seed extracts into the diet of hyperlipidemic rats was found to improve hyperlipidemic conditions by raising the level of high-density lipoprotein (HDL) and lowering total cholesterol, triglycerides and low-density lipoprotein (LDL) levels. Another study found that intake of 500 mg/day of N. Sativa in combination with statins (10-20 mg) for 6 months had a significant positive effect on triglycerides, LDL, HDL and total cholesterol levels in patients with stable coronary artery disease.
  2. Sativa is thought to be effective in the prognosis of autoimmune diseases such as psoriasis, systemic lupus erythematosus, rheumatoid arthritis and Behçet's disease by showing anti-inflammatory effect. When the studies on this subject were examined, it was observed that while some of the inflammation markers decreased, there was no effect in some others. The effects of N. Sativa on this issue are not clear.

Results and Conclusions

As a result, we see that traditional medicine is being re-exposed in the light of today's technology and knowledge. N. Sativa, which has been used since ancient times, has been a part of both religions, many different societies and traditional medicine. In today's conditions, herbs such as N. Sativa are frequently used again due to many reasons such as the less accessible and high price of medicines, the increase in ailments, and the popularization of the relationship between nutrition and health. It is thought that N. Sativa may have a positive and even therapeutic effect on oxidative stress and therefore on disorders caused or affected by oxidative stress. However, further clinical studies, human trials and clearer results on dose and toxicity are needed.

https://doi.org/10.58625/jfng-2477
PDF (Türkçe)

References

Ahmad, A., Husain, A., Mujeeb, M., Khan, S. A., Najmi, A. K., Siddique, N. A., Damanhouri, Z. A., & Anwar, F. (2013). A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pacific journal of tropical biomedicine, 3(5), 337–352. https://doi.org/10.1016/S2221-1691(13)60075-1

Takruri, H. R., & Dameh, M. A. (1998). Study of the nutritional value of black cumin seeds (Nigella sativaL). Journal of the Science of Food and Agriculture, 76(3), 404-410. https://doi.org/10.1002/(sici)1097-0010(199803)76:3%3C404::aid-jsfa964%3E3.0.co;2-l

Hajhashemi, V., Ghannadi, A., & Jafarabadi, H. (2004). Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18(3), 195-199. https://doi.org/10.1002/ptr.1390

Rastogi, R. P., Mehrotra, B. N., Pastogi, R. P. (1993). Compendium of Indian Medicinal plants. Central Drug Research Institute. Lucknow and Publications & Information Directorate, New Delhi, India, 2,10.

Goreja, W. G. (2003). Black seed. Nature’s Miracle, Remedy. Amazing Herbs Press.

Warrier, P. K. (1993). Indian medicinal plants: a compendium of 500 species (Vol. 5). Orient Blackswan.

Al-Kalaf, M. I., Ramadan, K. S. (2013). Antimicrobial and anticancer activity of Nigella sativa oil a review Australian. J Basic Appl Sci Res, 7, 505-514.

Gali-Muhtasib, H., El-Najjar, N., & Schneider-Stock, R. (2006). The medicinal potential of black seed (Nigella sativa) and its components. Advances in Phytomedicine, 2, 133-153. https://doi.org/10.1016/s1572-557x(05)02008-8

Mohsen, Z. A., Gheni, S. W., & Hussein, J. M. (2009). Study of the effect of black seed extract in some bacteria that cause urinary tract infection. J. Kerbala Univ, 7, 156-160.

AL-Mousawi, A. H., Jassim, A. N., & Al-Zendi, S. K. J. (2009). The effect of hot water and ethanol extract of Nigella sativa in immune system of Albino Mice. Baghdad Science Journal, 6(2). https://doi.org/10.21123/bsj.2009.6.2.235-243

Salem, M. L. (2005). Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. International immunopharmacology, 5(13-14), 1749-1770. https://doi.org/10.1016/j.intimp.2005.06.008

Nautiyal, O. H. (2019). Black seed (Nigella sativa) oil. Fruit Oils: Chemistry and Functionality, 839-857. https://doi.org/10.1007/978-3-030-12473-1_46

Ojueromi, O. O., Oboh, G., & Ademosun, A. O. (2022). Effect of black seeds (Nigella sativa) on inflammatory and immunomodulatory markers in Plasmodium berghei‐infected mice. Journal of food biochemistry, 46(11), e14300. https://doi.org/10.1111/jfbc.14300

Janfaza, S., & Janfaza, E. (2012). The study of pharmacologic and medicinal valuation of thymoquinone of oil of Nigella sativa in the treatment of diseases. Annals of Biological Research, 3(4), 1953-1957.

El-Dakhakhny, M., Barakat, M., Abd El-Halim, M., & Aly, S. M. (2000). Effects of Nigella sativa oil on gastric secretion and ethanol induced ulcer in rats. Journal of ethnopharmacology, 72(1-2), 299-304. https://doi.org/10.1016/s0378-8741(00)00235-x

Hosseinzadeh1ABCDEG, H., Parvardeh2ABCDEF, S., Nassiri-Asl2A, M., & Mansouri2A, M. T. (2005). Intracerebroventricular administration of thymoquinone, the major constituent of Nigella sativa seeds, suppresses epileptic seizures in rats. Med Sci Monit, 11(4), 110.

Khonche A, Gholamian M, Kianbakht S, Husseini H, Mohtashami R, Bayatpoor ME, Mirzadeh M, Mashayekh A, Hosseini MA (2018). Effectiveness of Nigella sativa oil on patients with non-alcoholic fatty liver: A randomized double-blind placebo-controlled trial. Acad. J. Med. Plants. 6(10): 307-312. https://doi.org/10.15413/ajmp.2018. 0152

Azizi, F., Ghorat, F., Rakhshani, M. H., & Rad, M. (2019). Comparison of the effect of topical use of Nigella Sativa oil and diclofenac gel on osteoarthritis pain in older people: A randomized, double-blind, clinical trial. Journal of Herbal Medicine, 16, 100259. http://dx.doi.org/10.1016/j.hermed.2019.100259

Hannan, M. A., Rahman, M. A., Sohag, A. A. M., Uddin, M. J., Dash, R., Sikder, M. H., ... & Kim, B. (2021). Black cumin (Nigella sativa L.): A comprehensive review on phytochemistry, health benefits, molecular pharmacology, and safety. Nutrients, 13(6), 1784. https://doi.org/10.3390/nu13061784

Koshak, A., Wei, L., Koshak, E., Wali, S., Alamoudi, O., Demerdash, A., ... & Heinrich, M. (2017). Nigella sativa supplementation improves asthma control and biomarkers: A randomized, double‐blind, placebo‐controlled trial. Phytotherapy Research, 31(3), 403-409. https://doi.org/10.1002/ptr.5761

Mabrouk, A. (2017). Protective effect of thymoquinone against lead-induced antioxidant defense system alteration in rat liver. Acta Biologica Hungarica, 68(3), 248-254. https://doi.org/10.1556/018.68.2017.3.2

Liu, H., Liu, H. Y., Jiang, Y. N., & Li, N. (2016). Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats. Molecular medicine reports, 13(3), 2836-2842. https://doi.org/10.3892/mmr.2016.4823

Mohit, M., Farrokhzad, A., Faraji, S. N., Heidarzadeh-Esfahani, N., & Kafeshani, M. (2020). Effect of Nigella sativa L. supplementation on inflammatory and oxidative stress indicators: A systematic review and meta-analysis of controlled clinical trials. Complementary Therapies in Medicine, 54, 102535. https://doi.org/10.1016/j.ctim.2020.102535

Montazeri, R. S., Fatahi, S., Sohouli, M. H., Abu‐Zaid, A., Santos, H. O., Găman, M. A., & Shidfar, F. (2021). The effect of nigella sativa on biomarkers of inflammation and oxidative stress: A systematic review and meta‐analysis of randomized controlled trials. Journal of Food Biochemistry, 45(4), e13625. https://doi.org/10.1111/jfbc.13625

Malekian, S., Ghassab-Abdollahi, N., Mirghafourvand, M., & Farshbaf-Khalili, A. (2021). The effect of Nigella sativa on oxidative stress and inflammatory biomarkers: A systematic review and meta-analysis. Journal of Complementary and Integrative Medicine, 18(2), 235-259. https://doi.org/10.1515/jcim-2019-0198

Baltgalvis, K. A., Greising, S. M., Warren, G. L., & Lowe, D. A. (2010). Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle. PloS one, 5(4), e10164. https://doi.org/10.1371/journal.pone.0010164

Sanhez-Rodriguez; M. A., Zacarias-Flores, M., Arronte-Rosales, A., Correa-Munoz, E., & Mendoz-Nunez, V. M. (2012). Menopause as a risk factor for oxidative stress. Menopause, 19(3), 361-367. https://doi.org/10.1097/gme.0b013e318229977d

Ibrahim, R. M., Hamdan, N. S., Ismail, M., Saini, S. M., Abd Rashid, S. N., Abd Latiff, L., & Mahmud, R. (2014). Protective effects of Nigella sativa on metabolic syndrome in menopausal women. Advanced pharmaceutical bulletin, 4(1), 29. https://doi.org/10.5681/apb.2014.005

Mostafa R M, Moustafa Y M, Mirghani Z, AlKusayer G M, Moustafa K M. Antioxidant effect of garlic (Allium sativum) and black seeds (Nigella sativa) in healthy postmenopausal women. SAGE Open Med. 2013;1. https://doi.org/10.1177/2050312113517501

Hallajzadeh, J., Milajerdi, A., Mobini, M., Amirani, E., Azizi, S., Nikkhah, E., ... & Mirhashemi, S. M. (2020). Effects of Nigella sativa on glycemic control, lipid profiles, and biomarkers of inflammatory and oxidative stress: A systematic review and meta‐analysis of randomized controlled clinical trials. Phytotherapy Research, 34(10), 2586-2608. https://doi.org/10.1002/ptr.6708

Betul, A. Y., & Semin, G. (2019). Wound healing effects of Nigella sativa L. essential oil in streptozotocin induced in diabetic rats. GSC Biological and Pharmaceutical Sciences, 7(3). https://doi.org/10.30574/gscbps.2019.7.3.0095

Hadi, S., Mirmiran, P., Daryabeygikhotbehsara, R., & Hadi, V. (2018). Effect of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress among people with type 2 diabetes mellitus: a randomized, double-blind, placebo controlled trial. https://doi.org/10.1002/ptr.6990

Kaatabi, H., Bamosa, A. O., Badar, A., Al-Elq, A., Abou-Hozaifa, B., Lebda, F., ... & Al-Almaie, S. (2015). Nigella sativa improves glycemic control and ameliorates oxidative stress in patients with type 2 diabetes mellitus: placebo controlled participant blinded clinical trial. PloS one, 10(2), e0113486. https://doi.org/10.1371/journal.pone.0113486

Heshmati, J., Namazi, N., Memarzadeh, M. R., Taghizadeh, M., & Kolahdooz, F. (2015). Nigella sativa oil affects glucose metabolism and lipid concentrations in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Food Research International, 70, 87-93. http://dx.doi.org/10.1016/j.foodres.2015.01.030

Rahmani, A., Niknafs, B., Naseri, M., Nouri, M., & Tarighat-Esfanjani, A. (2022). Effect of Nigella Sativa Oil on Oxidative Stress, Inflammatory, and Glycemic Control Indices in Diabetic Hemodialysis Patients: A Randomized Double-Blind, Controlled Trial. Evidence-based complementary and alternative medicine : eCAM, 2022, 2753294. https://doi.org/10.1155/2022/2753294

Ansari Z M, Nasiruddin M, Khan RA, Haque S F. (2017). Protective role of Nigella sativa in diabetic nephropathy: A randomized clinical trial. Saudi J. Kidney Dis. Transplant, 28(1), 9–14 https://doi.org/10.4103/1319-2442.198093

Kattoor, A. J., Pothineni, N., Palagiri, D., & Mehta, J. L. (2017). Oxidative stress in atherosclerosis. Current Atherosclerosis Reports, 19, 1-11. https://doi.org/10.1007/s11883-017-0678-6

Ahmad, S. H. A. H. Z. A. D., Chughtai, A., Hussain, R. I. Z. W. A. N. A., & Iqbal, S. H. A. Z. I. A. (2017). Physiological and biochemical role of nigella sativa in hyperlipidemic albino rats a comparative study. Pak. J. Med. Health Sci, 11, 195-196.

Tasawar, Z., Siraj, Z., Ahmad, N., & Lashari, M. H. (2011). The effects of Nigella sativa (Kalonji) on lipid profile in patients with stable coronary artery disease in Multan, Pakistan. Pakistan journal of nutrition, 10(2), 162-167. https://doi.org/10.3923/pjn.2011.162.167

Ghoreyshi, M., Mahmoudabady, M., Bafadam, S., & Niazmand, S. (2020). The protective effects of pharmacologic postconditioning of hydroalcoholic extract of Nigella sativa on functional activities and oxidative stress injury during ischemia–reperfusion in isolated rat heart. Cardiovascular Toxicology, 20, 130-138. https://doi.org/10.1007/s12012-019-09540-x

Rizka A, Setiati S, Lydia A, Dewiasty E. (2017). Effect of Nigella sativa Seed Extract for Hypertension in Elderly: A Double-blind, Randomized Controlled Trial. Acta Med. Indones. 49(4), 307–313.

Hussain, N., Majid, S. A., Abbasi, M. S., Hussain, M. A., Rehman, K., Khan, M. Q., ... & Habib, T. (2017). Use of black seed (Nigella sativa L.) oil in the management of hypertensive and hyperlipidemic individuals of district Muzaffarabad, Azad Kashmir, Pakistan. Applied Ecology & Environmental Research, 15(4). http://dx.doi.org/10.15666/aeer/1504_031048

Badar, A., Kaatabi, H., Bamosa, A., Al-Elq, A., Abou-Hozaifa, B., Lebda, F., ... & Al-Almaie, S. (2017). Effect of Nigella sativa supplementation over a one-year period on lipid levels, blood pressure and heart rate in type-2 diabetic patients receiving oral hypoglycemic agents: nonrandomized clinical trial. Annals of Saudi medicine, 37(1), 56-63. https://doi.org/10.5144/0256-4947.2017.56

Mohtashami, A., Mahaki, B., Azadbakht, L., & Entezari, M. H. (2016). Effects of bread with Nigella sativa on lipid profiles, apolipoproteins and inflammatory factor in metabolic syndrome patients. Clinical nutrition research, 5(2), 89-95. https://doi.org/10.7762/cnr.2016.5.2.89

Elfouly, A. E., Ismail, M. A., Kamal, H. M., Ahmed, S. A., & Fiala, L. E. (2019). A randomized controlled trial measuring the effect of Nigella sativa extract on lipid profile in adult patients with dyslipidemia attending family practice clinic.”. Ismailia, Egypt: Suez Canal University Hospital. https://doi.org/10.1016/s0378-8741(00)00235-x

Rashidmayvan, M., Mohammadshahi, M., Seyedian, S. S., & Haghighizadeh, M. H. (2019). The effect of Nigella sativa oil on serum levels of inflammatory markers, liver enzymes, lipid profile, insulin and fasting blood sugar in patients with non-alcoholic fatty liver. Journal of diabetes & metabolic disorders, 18, 453-459. https://doi.org/10.1007/s40200-019-00439-6

Darand, M., Darabi, Z., Yari, Z., Hedayati, M., Shahrbaf, M. A., Khoncheh, A., ... & Hekmatdoost, A. (2019). The effects of black seed supplementation on cardiovascular risk factors in patients with nonalcoholic fatty liver disease: A randomized, double‐blind, placebo‐controlled clinical trial. Phytotherapy Research, 33(9), 2369-2377. https://doi.org/10.1002/ptr.6424

Doğan, P., Tanrikulu, G., Soyuer, Ü., & Köse, K. (1994). Oxidative enzymes of polymorphonuclear leucocytes and plasma fibrinogen, ceruloplasmin, and copper levels in Behcet's disease. Clinical biochemistry, 27(5), 413-418. https://doi.org/10.1016/0009-9120(94)90046-9

Sharifian, A., Farahani, S., Pasalar, P., Gharavi, M., & Aminian, O. (2005). Shift work as an oxidative stressor. Journal of circadian rhythms, 3(1), 1-3. https://doi.org/10.1186/1740-3391-3-15

Mantas, C. (1999). Serum levels of Th2 cytokines IL-4 and IL-10 in Behcet's disease. J Rheumatol, 26, 510-512.

Köse, K., Doğan, P., Asçıoğlu, M., Erkılıç, K., & Asçıoğlu, Ö. (1995). Oxidative stress and antioxidant defenses in plasma of patients with Behcet's disease. The Tohoku journal of experimental medicine, 176(4), 239-248. https://doi.org/10.1620/tjem.176.239

Takeno, M., Kariyone, A. I., Yamashita, N., Takiguchi, M., Mizushima, Y., Kaneoka, H., & Sakane, T. (1995). Excessive function of peripheral blood neutrophils from patients with behcet's disease and from hla‐b51 transgenic mice. Arthritis & Rheumatism, 38(3), 426-433. https://doi.org/10.1002/art.1780380321

Nielsen, F., Mikkelsen, B. B., Nielsen, J. B., Andersen, H. R., & Grandjean, P. (1997). Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clinical chemistry, 43(7), 1209-1214. https://doi.org/10.1093/clinchem/43.7.1209

Kheirouri, S., Hadi, V., & Alizadeh, M. (2016). Immunomodulatory effect of Nigella sativa oil on T lymphocytes in patients with rheumatoid arthritis. Immunological investigations, 45(4), 271-283. https://doi.org/10.3109/08820139.2016.1153649

Hadi, V., Kheirouri, S., Alizadeh, M., Khabbazi, A., & Hosseini, H. (2016). Effects of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress status in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled clinical trial. Avicenna journal of phytomedicine, 6(1), 34.

Amizadeh, S., Rashtchizadeh, N., Khabbazi, A., Ghorbanihaghjo, A., Ebrahimi, A. A., Vatankhah, A. Mahdavi A.M., & Taghizadeh, M. (2020). Effect of Nigella sativa oil extracts on inflammatory and oxidative stress markers in Behcet’s disease: A randomized, double-blind, placebo-controlled clinical trial. Avicenna journal of phytomedicine, 10(2), 181.

Shahba, A., Esheba, N. E., Fooda, A. A., El-Dardiry, S., Wagih, A., & el-Deeb, O. (2015). Effect of nigella sativa and vitamin E on some oxidative/nitrosative biomarkers in systemic lupus erythematosus patients. Life Sci J, 12, 157-62.

Khaldi, T., Chekchaki, N., Boumendjel, M., Taibi, F., Abdellaoui, M., Messarah, M., & Boumendjel, A. (2018). Ameliorating effects of Nigella sativa oil on aggravation of inflammation, oxidative stress and cytotoxicity induced by smokeless tobacco extract in an allergic asthma model in Wistar rats. Allergologia et Immunopathologia, 46(5), 472-481. https://doi.org/10.1016/j.aller.2018.02.005

Alhibshi, A. H., Odawara, A., & Suzuki, I. (2019). Neuroprotective efficacy of thymoquinone against amyloid beta-induced neurotoxicity in human induced pluripotent stem cell-derived cholinergic neurons. Biochemistry and biophysics reports, 17, 122-126. https://doi.org/10.1016/j.bbrep.2018.12.005

Ismail, N., Ismail, M., Azmi, N. H., Bakar, M. F. A., Yida, Z., Abdullah, M. A., & Basri, H. (2017). Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats. Biomedicine & Pharmacotherapy, 95, 780-788. https://doi.org/10.1016/j.biopha.2017.08.074

Ebrahimi, S. S., Oryan, S., Izadpanah, E., & Hassanzadeh, K. (2017). Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease. Toxicology letters, 276, 108-114. https://doi.org/10.1016/j.toxlet.2017.05.018

Sandhu, K. S., & Rana, A. C. (2013). Evaluation of anti parkinson’s activity of Nigella sativa (kalonji) seeds in chlorpromazine induced experimental animal model. mortality, 22(5), 23.

Shawki, M., El Wakeel, L., Shatla, R., El-Saeed, G., Ibrahim, S., & Badary, O. (2013). The clinical outcome of adjuvant therapy with black seed oil on intractable paediatric seizures: a pilot study. Epileptic disorders, 15, 295-301. https://doi.org/10.1684/epd.2013.0602

Mahmoud, Y. K., & Abdelrazek, H. M. (2019). Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomedicine & Pharmacotherapy, 115, 108783. https://doi.org/10.1016/j.biopha.2019.108783

Ansary, J., Giampieri, F., Forbes-Hernandez, T. Y., Regolo, L., Quinzi, D., Gracia Villar, S., Garcia Villena, E., Tutusaus Pifarre, K., Alvarez-Suarez, JM., Battino, M., & Cianciosi, D. (2021). Nutritional value and preventive role of Nigella sativa L. and its main component thymoquinone in cancer: an evidenced-based review of preclinical and clinical studies. Molecules, 26(8), 2108. https://doi.org/10.3390/molecules26082108

Khan, M. A., Tania, M., Wei, C., Mei, Z., Fu, S., Cheng, J., ... & Fu, J. (2015). Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget, 6(23), 19580. https://doi.org/10.18632/oncotarget.3973

Rooney, S., & Ryan, M. F. (2005). Effects of alpha-hederin and thymoquinone, constituents of Nigella sativa, on human cancer cell lines. Anticancer research, 25(3B), 2199-2204.

Raghunandhakumar, S., Paramasivam, A., Senthilraja, S., Naveenkumar, C., Asokkumar, S., Binuclara, J., ... & Devaki, T. (2013). Thymoquinone inhibits cell proliferation through regulation of G1/S phase cell cycle transition in N-nitrosodiethylamine-induced experimental rat hepatocellular carcinoma. Toxicology letters, 223(1), 60-72. https://doi.org/10.1016/j.toxlet.2013.08.018

Zhu, N., Zhao, X., Xiang, Y., Ye, S., Huang, J., Hu, W., ... & Zeng, C. (2016). Thymoquinone attenuates monocrotaline-induced pulmonary artery hypertension via inhibiting pulmonary arterial remodeling in rats. International Journal of Cardiology, 221, 587-596. https://doi.org/10.1016/j.ijcard.2016.06.192

El Daly, E. S. (1998). Protective effect of cysteine and vitamine E, Crocus sativus and Nigella sativa extracts on cisplatine-induced toxicity in rats. Journal de pharmacie de Belgique, 53, 87-95.

Khanna, T., Zaidi, F. A., & Dandiya, P. C. (1993). CNS and analgesic studies on Nigella sativa. Fitoterapia-milano, 64, 407-407.

Zaoui, A., Cherrah, Y., Mahassini, N., Alaoui, K., Amarouch, H., & Hassar, M. (2002). Acute and chronic toxicity of Nigella sativa fixed oil. Phytomedicine, 9(1), 69-74. https://doi.org/10.1078/0944-7113-00084

Dollah, M. A., Parhizkar, S., Latiff, L. A., & Hassan, M. H. B. (2013). Toxicity effect of Nigella sativa on the liver function of rats. Advanced pharmaceutical bulletin, 3(1), 97. https://doi.org/10.5681/apb.2013.016

Badary, O. A., Al‐Shabanah, O. A., Nagi, M. N., Al‐Bekairi, A. M., & Elmazar, M. (1998). Acute and subchronic toxicity of thymoquinone in mice. Drug Development Research, 44(2‐3), 56-61. https://doi.org/10.1002/(SICI)1098-2299(199806/07)44:2/3%3C56::AID-DDR2%3E3.0.CO;2-9

Abulfadl, Y. S., El-Maraghy, N. N., Ahmed, A. E., Nofal, S., Abdel-Mottaleb, Y., & Badary, O. A. (2018). Thymoquinone alleviates the experimentally induced Alzheimer’s disease inflammation by modulation of TLRs signaling. Human & experimental toxicology, 37(10), 1092-1104. https://doi.org/10.1177/0960327118755256

Ali, B. H., & Blunden, G. (2003). Pharmacological and toxicological properties of Nigella sativa. Phytotherapy Research: An international journal devoted to pharmacological and toxicological evaluation of natural product derivatives, 17(4), 299-305. https://doi.org/10.1002/ptr.1309

Almroth, B. C., Sturve, J., Berglund, Å., & Förlin, L. (2005). Oxidative damage in eelpout (Zoarces viviparus), measured as protein carbonyls and TBARS, as biomarkers. Aquatic toxicology, 73(2), 171-180. https://doi.org/10.1016/j.aquatox.2005.03.007

Beckman, K. B., & Ames, B. N. (1998). The free radical theory of aging matures. Physiological reviews. https://doi.org/10.1152/physrev.1998.78.2.547

Bilal, A. (2008). Effects of different preparations of Nigella sativa (ns) on glucose and lipid metabolism in type II diabetic patients (Doctoral dissertation, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan). http://142.54.178.187:9060/xmlui/handle/123456789/3022

Chandrasekaran, A., Idelchik, M. D. P. S., & Melendez, J. A. (2017). Redox control of senescence and age-related disease. Redox biology, 11, 91-102. https://doi.org/10.1016/j.redox.2016.11.005

Chehl, N., Chipitsyna, G., Gong, Q., Yeo, C. J., & Arafat, H. A. (2009). Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. Hpb, 11(5), 373-381. https://doi.org/10.1111/j.1477-2574.2009.00059.x

Cheung, C. C. C., Zheng, G. J., Li, A. M. Y., Richardson, B. J., & Lam, P. K. S. (2001). Relationships between tissue concentrations of polycyclic aromatic hydrocarbons and antioxidative responses of marine mussels, Perna viridis. Aquatic toxicology, 52(3-4), 189-203. https://doi.org/10.1016/s0166-445x(00)00145-4

Dai, F., Miao, Q., Zhou, B., Yang, L., & Liu, Z. L. (2006). Protective effects of flavonols and their glycosides against free radical-induced oxidative hemolysis of red blood cells. Life Sciences, 78(21), 2488-2493. https://doi.org/10.1016/j.lfs.2005.10.009

Datau, E. A., Surachmanto, E. E., Pandelaki, K., & Langi, J. A. (2010). Efficacy of Nigella sativa on serum free testosterone and metabolic disturbances in central obese male. Acta Medica Indonesiana, 42(3), 130-134. https://pubmed.ncbi.nlm.nih.gov/20724766/

Dinagaran, S., Sridhar, S., & Eganathan, P. (2016). Chemical composition and antioxidant activities of black seed oil (Nigella sativa L.). International Journal of Pharmaceutical Sciences and Research, 7(11), 4473. http://dx.doi.org/10.13040/IJPSR.0975-8232.7(11).4473-79

Duarte, T. L., & Lunec, J. (2005). When is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free radical research, 39(7), 671-686. https://doi.org/10.1080/10715760500104025

Effenberger, K., Breyer, S., & Schobert, R. (2010). Terpene conjugates of the Nigella sativa seed‐oil constituent thymoquinone with enhanced efficacy in cancer cells. Chemistry & biodiversity, 7(1), 129-139. https://doi.org/10.1002/cbdv.200900328

El‐Mahdy, M. A., Zhu, Q., Wang, Q. E., Wani, G., & Wani, A. A. (2005). Thymoquinone induces apoptosis through activation of caspase‐8 and mitochondrial events in p53‐null myeloblastic leukemia HL‐60 cells. International journal of cancer, 117(3), 409-417. https://doi.org/10.1002/ijc.21205

El-Shanshory, M., Hablas, N. M., Aboonq, M. S., Fakhreldin, A. R., Attia, M., Arafa, W., ... & El Sayed, S. M. (2019). Nigella sativa improves anemia, enhances immunity and relieves iron overload-induced oxidative stress as a novel promising treatment in children having beta-thalassemia major. Journal of Herbal Medicine, 16, 100245. https://doi.org/10.1016/j.hermed.2018.11.001

Farhangi, M. A., Dehghan, P., & Tajmiri, S. (2018). Powdered black cumin seeds strongly improves serum lipids, atherogenic index of plasma and modulates anthropometric features in patients with Hashimoto’s thyroiditis. Lipids in health and disease, 17, 1-7. https://doi.org/10.1186/s12944-018-0704-x

Flatt T. (2012). A new definition of aging?. Frontiers in genetics, 3, 148. https://doi.org/10.3389/fgene.2012.00148

Fox S I. Human Physiology. (2017). 16th Ed. McGraw-Hill Education, 666–670.

Galanello, R., & Origa, R. (2010). Beta-thalassemia. Orphanet journal of rare diseases, 5, 1-15. https://doi.org/10.1186/1750-1172-5-11

Gharby, S., Harhar, H., Guillaume, D., Roudani, A., Boulbaroud, S., Ibrahimi, M., ... & Charrouf, Z. (2015). Chemical investigation of Nigella sativa L. seed oil produced in Morocco. Journal of the Saudi Society of Agricultural Sciences, 14(2), 172-177. http://dx.doi.org/10.1016/j.jssas.2013.12.001

Halliwell, B. (2007). Biochemistry of oxidative stress. Biochemical society transactions, 35(5), 1147-1150. https://doi.org/10.1042/bst0351147

Harzallah, O., Kerkeni, A., Baati, T., & Mahjoub, S. (2008). Oxidative stress: correlation with Behçet's disease duration, activity and severity. European journal of internal medicine, 19(7), 541-547. https://doi.org/10.1016/j.ejim.2008.08.001

Hayes, J. D., & Pulford, D. J. (1995). The glut athione S-transferase supergene family: regulation of GST and the contribution of the lsoenzymes to cancer chemoprotection and drug resistance part I. Critical reviews in biochemistry and molecular biology, 30(6), 445-520. https://doi.org/10.3109/10409239509083491

Hiner, A. N., Raven, E. L., Thorneley, R. N., García-Cánovas, F., & Rodríguez-López, J. N. (2002). Mechanisms of compound I formation in heme peroxidases. Journal of inorganic biochemistry, 91(1), 27-34. https://doi.org/10.1016/s0162-0134(02)00390-2

Hozoori, M., Fallah Huseini, H., Kolahdooz, M., Nasri, S., & Zadeh Modarres, S. (2017). The effects of Nigella sativa L. seed oil on BMI, WC and FBS in overweight men: A randomized controlled clinical trial. Future Natural Products, 3(4), 35-41. http://dx.doi.org/10.1016/j.phymed.2014.02.006

Islam, M. N., Hossain, K. S., Sarker, P. P., Ferdous, J., Hannan, M. A., Rahman, M. M., ... & Uddin, M. J. (2021). Revisiting pharmacological potentials of Nigella sativa seed: A promising option for COVID‐19 prevention and cure. Phytotherapy Research, 35(3), 1329-1344. https://doi.org/10.1002/ptr.6895

Khan, N., & Sultana, S. (2005). Inhibition of two stage renal carcinogenesis, oxidative damage and hyperproliferative response by Nigella sativa. European Journal of Cancer Prevention, 159-168. https://doi.org/10.1097/00008469-200504000-00012

Latiff, L. A., Parhizkar, S., Dollah, M. A., & Hassan, S. T. S. (2014). Alternative supplement for enhancement of reproductive health and metabolic profile among perimenopausal women: a novel role of Nigella sativa. Iranian Journal of Basic Medical Sciences, 17(12), 980. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4387233/

Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., ... & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical interventions in aging, 757-772. https://doi.org/10.2147/cia.s158513

Linster, C. L., & Van Schaftingen, E. (2007). Vitamin C: Biosynthesis, recycling and degradation in mammals. The FEBS journal, 274(1), 1-22. https://doi.org/10.1111/j.1742-4658.2006.05607.x

MA, G. (2011). Hypolipidemic effects of Nigella sativa L. seeds oil in healthy volunteers: a randomized, double-blind, placebo-controlled clinical trial.

Mahdavi, R., Alizadeh, M., Namazi, N., & Farajnia, S. (2016). Changes of body composition and circulating adipokines in response to Nigella sativa oil with a calorie restricted diet in obese women. Journal of Herbal Medicine, 6(2), 67-72. http://dx.doi.org/doi:10.1016/j.hermed.2016.03.003

Majdalawieh, A. F., Yousef, S. M., & Abu-Yousef, I. A. (2021). Thymoquinone, a major constituent in Nigella sativa seeds, is a potential preventative and treatment option for atherosclerosis. European Journal of Pharmacology, 909, 174420. https://doi.org/10.1016/j.ejphar.2021.174420

McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). The Journal of biological chemistry, 244(22), 6049–6055. https://doi.org/10.1016/S0021-9258(18)63504-5

Miquel, J. (2009). An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Current pharmaceutical design, 15(26), 3003-3026. https://doi.org/10.2174/138161209789058110

Moghimi, M., Farzaneh, V., & Bakhshabadi, H. (2018). The effect of ultrasound pretreatment on some selected physicochemical properties of black cumin (Nigella Sativa). Nutrire, 43(1), 18. https://doi.org/10.1186/s41110-018-0077-y

Mosialou, E., Ekström, G., Adang, A. E., & Morgenstern, R. (1993). Evidence that rat liver microsomal glutathione transferase is responsible for glutathione-dependent protection against lipid peroxidation. Biochemical pharmacology, 45(8), 1645-1651. https://doi.org/10.1016/0006-2952(93)90305-g

Najim, R. A., Sharquie, K. E., & ABU‐RAGHIF, A. R. (2007). Oxidative stress in patients with Behcet's disease: I correlation with severity and clinical parameters. The Journal of dermatology, 34(5), 308-314. https://doi.org/10.1111/j.1346-8138.2007.00278.x

Nikkhah‐Bodaghi, M., Darabi, Z., Agah, S., & Hekmatdoost, A. (2019). The effects of Nigella sativa on quality of life, disease activity index, and some of inflammatory and oxidative stress factors in patients with ulcerative colitis. Phytotherapy research, 33(4), 1027-1032. https://doi.org/10.1002/ptr.6296

Okada, K., Wangpoengtrakul, C., Tanaka, T., Toyokuni, S., Uchida, K., & Osawa, T. (2001). Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. The Journal of nutrition, 131(8), 2090-2095. https://doi.org/10.1093/jn/131.8.2090

Paarakh PM. Nigella sativa Linn.(2010). A comprehensive review. Indian J Nat Prod Resour, 1,409–429.

Rao, M. V., Al‐Marzouqi, A. H., Kaneez, F. S., Ashraf, S. S., & Adem, A. (2007). Comparative evaluation of SFE and solvent extraction methods on the yield and composition of black seeds (Nigella sativa). Journal of liquid chromatography & related technologies, 30(17), 2545-2555. http://dx.doi.org/10.1080/10826070701540100

Salomi, M. J., Nair, S. C., & Panikkar, K. R. (1991). Inhibitory effects of Nigella sativa and saffron (Crocus sativus) on chemical carcinogenesis in mice. https://doi.org/10.1080/01635589109514142

Shahid, F., Farooqui, Z., & Khan, F. (2018). Cisplatin-induced gastrointestinal toxicity: An update on possible mechanisms and on available gastroprotective strategies. European Journal of Pharmacology, 827, 49-57. https://doi.org/10.1016/j.ejphar.2018.03.009

Shahid, F., Farooqui, Z., Rizwan, S., Abidi, S., Parwez, I., & Khan, F. (2017). Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on brush border membrane enzymes, carbohydrate metabolism and antioxidant system in rat intestine. Experimental and toxicologic pathology, 69(5), 299-306. https://doi.org/10.1016/j.etp.2017.02.001

Sherwani, S., Rajendrasozhan, S., Khan, M. W. A., Saleem, M., Khan, M., Khan, S., ... & Othman Alqahtani, F. (2022). Pharmacological Profile of Nigella sativa Seeds in Combating COVID-19 through In-Vitro and Molecular Docking Studies. Processes, 10(7), 1346. https://doi.org/10.3390/pr10071346

Soleimannejad, K., Rahmani, A., Hatefi, M., Khataminia, M., Ahmadi, M. R. H., & Asadollahi, K. (2017). Effects of nigella sativa extract on markers of cerebral angiogenesis after global ischemia of brain in rats. Journal of Stroke and Cerebrovascular Diseases, 26(7), 1514-1520. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.02.040

Staniek, K., & Gille, L. (2010, November). Is thymoquinone an antioxidant?. In BMC pharmacology (Vol. 10, No. 1, pp. 1-1). BioMed Central. https://doi.org/10.1186/1471-2210-10-S1-A9

Tappel, M. E., Chaudiere, J., & Tappel, A. L. (1982). Glutathione peroxidase activities of animal tissues. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 73(4), 945-949. https://doi.org/10.1016/0305-0491(82)90341-8

Thabrew, M. I., Mitry, R. R., Morsy, M. A., & Hughes, R. D. (2005). Cytotoxic effects of a decoction of Nigella sativa, Hemidesmus indicus and Smilax glabra on human hepatoma HepG2 cells. Life sciences, 77(12), 1319-1330. https://doi.org/10.1016/j.lfs.2005.01.022

Ulusu, N. N., & Tandoğan, B. (2007). Purification and kinetic properties of glutathione reductase from bovine liver. Molecular and cellular biochemistry, 303(1-2), 45–51. https://doi.org/10.1007/s11010-007-9454-1

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, 39(1), 44-84. https://doi.org/10.1016/j.biocel.2006.07.001

Yi, T., Cho, S. G., Yi, Z., Pang, X., Rodriguez, M., Wang, Y., ... & Liu, M. (2008). Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Molecular cancer therapeutics, 7(7), 1789-1796. https://doi.org/10.1158/1535-7163.mct-08-0124

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Toros University Journal of Food, Nutrition and Gastronomy

Downloads

Download data is not yet available.