Urolithin A ve yaşlı sağlığına güncel yaklaşım
PDF

Anahtar Kelimeler

Urolithin A
sağlıklı yaşlanma
fonksiyonel besinler.

Nasıl Atıf Yapılır

Düdükçü, N. (2024). Urolithin A ve yaşlı sağlığına güncel yaklaşım. Toros Üniversitesi Gıda, Beslenme Ve Gastronomi Dergisi, 2(2), 197–209. https://doi.org/10.58625/jfng-2290

Özet

Fizyolojik boyutuyla yaşlanma yaşlanma sürecine bağlı olarak yapı ve fonksiyonlardaki bozulmadır. Psikolojik boyutuyla yaşlanma ise bireylerin yaşlılık döneminde geçirdikleri davranış, uyum ve mental fonksiyonlarındaki değişimleri kapsar. Yaşlanma; evrensel, ilerleyici, kademeli ve engellenemez bir süreçtir. Günümüzde yaşlı nüfusun artışına paralel yaşlanmayla ilişkili artan hastalıkların ciddi bir toplum sağlığı problemi haline gelmiştir. Son dönemde insan mikrobiyotasını hedef alan yaşlanma yönetimi; sağlığı, yaşam süresini ve yaşam kalitesini iyileştirmek yeni bir yaklaşım olarak görülmektedir. Yaşlı popülasyona aktif yaşlanma bilinci kazandırılması ve kronik hastalık sıklığını minimuma indirilebilmesi için beslenme önemli rol oynamaktadır. Fonksiyonel besinler sağlıklı ve dengeli beslenmede önemli yer teşkil etmektedir ve diyetle ilişkili hastalık risklerinin azaltılmasına katkıda bulunmaktadır. Bu fonksiyonel besinlerden bazıları nar, çilek ve fındıktır. Bu besinlerde bulunan ellagitanninler ve ellagik asit gibi polifenollerden bağırsaklarda doğal bir bileşik olan Urolithin A üretimi gerçekleşir. Urolithin A, ellagitanninlerin bağırsak bakterileri tarafından dönüştürülmesinden üretilen metabolit bileşiktir. Urolithin A araştırmalarındaki son gelişmeler, Urolithin A uygulamasının beyin, yağ, kalp ve karaciğer dokuları dahil olmak üzere çeşitli dokulardaki inflamasyonu azalttığını ve Alzheimer hastalığının, tip 2 diyabetin ve nonalkolik yağlı karaciğer hastalığının başlamasının potansiyel olarak geciktirilmesine veya önlenmesine yardımcı olduğunu bildirmektedir. Yapılan çalışmalar Urolithin A takviyesinin insanlarda beyin, eklemler ve diğer organları etkileyen yaşlanma ve yaşa bağlı koşullara karşı koruyucu olduğunu göstermektedir. Bu bağlamda bu derlemede sağlıklı yaşlanmayı teşvik etmek için yaşlanma sırasında mitokondriyal işlevi ve organizma sağlığını iyileştirmek için insanlarda bir beslenme müdahalesi olarak Urolithin A takviyesinin önemi araştırılmıştır. 

https://doi.org/10.58625/jfng-2290
PDF

Referanslar

World Health Organization (WHO). (2014). Noncommunicable Diseases Country Profiles 2011. https://apps.who.int/iris/handle/10665/44704

Türkiye İstatistik Kurumu. (2023). İstatistiklerle Yaşlılar,2022. https://data.tuik.gov.tr/Bulten/Index?p=Istatistiklerle-Yaslilar-2021-45636

Öksüzokyar, M. M., Eryiğit, S. Ç., & Öğüt, S. (2016). Biyolojik yaşlanma nedenleri ve etkileri. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 4(1). https://dergipark.org.tr/en/pub/maeusabed/issue/24655/260781?publisher=mehmetakif

Prince, M., Wimo, A., & Prina , M. (2015). World Alzheimer Report 2015. London, Alzheimer’s Disease International. https://unilim.hal.science/hal-03495438/document

Patterson, C. (2018). World alzheimer report. https://apo.org.au/node/260056

Kubat Bakır, G., & Akın, S. (2019). Yaşlılıkta kronik hastalıkların yönetimi ile ilişkili faktörler. Sağlık ve Toplum, 29(2), 17-25. http://openaccess.maltepe.edu.tr/xmlui/handle/20.500.12415/7860

Ling, Z.,Liu, X., & Wu, S. (2022).Gut microbiota and aging. Crit Rev Food Sci Nutr,1,1-56. https://doi.org/10.1080/10408398.2020.1867054

Öğüt, S., Polat, M., &Orhan, H. (2008). Isparta ve Burdur huzurevlerinde kalan yaşlıların sosyodemografik durumları ve beslenme tercihleri. Turk Geriatri Dergisi, 11, 82–87. https://www.gidadernegi.org/TR/Genel/2409349551d0e.pdf?DIL=1&BELGEANAH=1612&DOSYAISIM=240934955.pdf

Espín, J. C., Larrosa, M., & Tomás-Barberán, F. (2013). Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2013/270418

Cerdá, B., Periago, P., & Tomás-Barberán, F. A. (2005). Identification of urolithin A as a metabolite produced by human colon microflora from ellagic acid and related compounds. Journal of Agricultural and Food Chemistry, 53(14), 5571-5576. https://doi.org/10.1021/jf050384i

Gimenez-Bastida, J.A., Gonzalez-Sarrıas, A., & Garcıa-Conesa, M. T. (2012). Ellagitannin metabolites, urolithin A glucuronide and its aglycone urolithin A, ameliorate TNF--induced inflammation and associated molecular markers in human aortic endothelial cells. Molekuler Nutrition & Food Research, 56, 784-796. https://doi.org/10.1002/mnfr.201100677

Cortés-Martín, A., García-Villalba, R., & Espín, J. C. (2018). The gut microbiota urolithin metabotypes revisited: the human metabolism of ellagic acid is mainly determined by aging. Food & Function, 9(8), 4100-4106. https://doi.org/10.1039/C8FO00956B

García-Mantrana, I., Calatayud, M., & Collado, M. C. (2019). Urolithin metabotypes can determine the modulation of gut microbiota in healthy individuals by tracking walnuts consumption over three days. Nutrients, 11(10), 2483. https://doi.org/10.3390/nu11102483

Selma, M. V., Beltrán, D., & Tomás-Barberán, F. A. (2014). Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food & Function, 5(8), 1779-1784. https://doi.org/10.1039/C4FO00092G

Zhang, X., Zhao, A., & Burton-Freeman, B. M. (2020). Functional deficits in gut microbiome of young and middle-aged adults with prediabetes apparent in metabolizing bioactive (Poly) phenols. Nutrients, 12(11), 3595. https://doi.org/10.3390/nu12113595

Skledar, D. G., Tomašič, T., & Zega, A. (2019). Evaluation of endocrine activities of ellagic acid and urolithins using reporter gene assays. Chemosphere, 220, 706-713. https://doi.org/10.1016/j.chemosphere.2018.12.185

Muku, G. E., Murray, I. A., & Perdew, G. H. (2018). Urolithin A is a dietary microbiota-derived human aryl hydrocarbon receptor antagonist. Metabolites, 8(4), 86. https://doi.org/10.3390/metabo8040086

Ávila-Gálvez, M. A., Giménez-Bastida, J. A., & Espín, J. C. (2019). Tissue deconjugation of urolithin A glucuronide to free urolithin A in systemic inflammation. Food & Function, 10(6), 3135-3141. https://doi.org/10.1039/C9FO00298G

Toney, A. M., Fan, R., & Chung, S. (2019). Urolithin A, a gut metabolite, improves insulin sensitivity through augmentation of mitochondrial function and biogenesis. Obesity, 27(4), 612-620. https://doi.org/10.1002/oby.22404

Kang, I., Buckner, T., & Chung, S. (2016). Improvements in metabolic health with consumption of ellagic acid and subsequent conversion into urolithins: evidence and mechanisms. Advances in Nutrition, 7(5), 961-972. https://advances.nutrition.org/

Cerdá, B., Espín, J. C., & Tomás-Barberán, F. A. (2004). The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolised into bioavailable but poor antioxidant hydroxy–6H–dibenzopyran–6–one derivatives by the colonic microflora of healthy humans. European Journal of Nutrition, 43(4), 205-220. https://link.springer.com/article/10.1007/s00394-004-0461-7

García-Villalba, R., Beltrán, D., & Tomás-Barberán, F. A. (2013). Time course production of urolithins from ellagic acid by human gut microbiota. Journal of Agricultural and Food Chemistry, 61(37), 8797-8806. https://doi.org/10.1021/jf402498b

D’Amico, D., Andreux, P. A., & Auwerx, J. (2021). Impact of the natural compound urolithin A on health, disease, and aging. Trends in Molecular Medicine, 27(7), 687-699. https://doi.org/10.1016/j.molmed.2021.04.009

López-Otín, C., Blasco, M. A., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039

Santanasto, A. J., Coen, P. M.. & Newman, A. B. (2016). The relationship between mitochondrial function and walking performance in older adults with a wide range of physical function. Experimental Gerontology, 81, 1-7. https://doi.org/10.1016/j.exger.2016.04.002

Balan, E., Schwalm, C., & Deldicque, L. (2019).Regular endurance exercise promotes fission, mitophagy, and oxidativ phosphorylationin human skeletal muscle independently of age. Frontiersinphysiology, 10, 1088. https://doi.org/10.3389/fphys.2019.01088

Ryu, D., Mouchiroud, L., & Auwerx, J. (2016). Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nature Medicine, 22(8), 879-888. https://www.nature.com/articles/nm.4132.

Palikaras, K., Lionaki, E., & Tavernarakis, N. (2018). Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nature Cell Biology, 20(9), 1013-1022. https://www.nature.com/articles/s41556-018-0176-2

Luan, P., D’Amico, D.,& Auwerx, J. (2021). Urolithin A improves muscle function by inducing mitophagy in muscular dystrophy. Science Translational Medicine, 13(588). https://doi.org/10.1126/scitranslmed.abb0319

Tuohetaerbaike, B., Zhang, Y., & Li, X. (2020). Pancreas protective effects of Urolithin A on type 2 diabetic mice induced by high fat and streptozotocin via regulating autophagy and AKT/mTOR signaling pathway. Journal of Ethnopharmacology, 250, 112479. https://doi.org/10.1016/j.jep.2019.112479

Ploumi, C., Daskalaki, I., & Tavernarakis, N. (2017). Mitochondrial biogenesis and clearance: a balancing act. The FEBS Journal, 284(2), 183-195. https://doi.org/10.1111/febs.13820

Andreux, P. A., Blanco-Bose, W., & Rinsch, C. (2019). The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health humans. Nature Metabolism, 1(6), 595-603. https://www.nature.com/articles/s42255-019-0073-4

Franceschi, C., Garagnani, P., & Santoro, A. (2018). Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nature Reviews Endocrinology, 14(10), 576-590. https://www.nature.com/articles/s41574-018-0059-4

Singh, A., Andreux, P., & Rinsch, C. (2017). Orally administered urolithin A is safe and modulates muscle and mitochondrial biomarkers in elderly. Innovation in Aging, 1(suppl_1), 1223-1224. https://doi.org/10.1093/geroni/igx004.4446

Guada, M., Ganugula, R., & Kumar, M. N. R. (2017). Urolithin A mitigates cisplatin-induced nephrotoxicity by inhibiting renal inflammation and apoptosis in an experimental rat model. Journal of Pharmacology and Experimental Therapeutics, 363(1), 58-65. https://doi.org/10.1124/jpet.117.242420

Gong, Z., Huang, J., & Xuan, A. (2019). Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. Journal of Neuroinflammation, 16(1).https://doi.org/10.1186/s12974-019-1450-3

Fang, E. F., Hou, Y.. & Bohr, V. A. (2019). Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nature Neuroscience, 22(3), 401-412. https://www.nature.com/articles/s41593-018-0332-9

Di Lorito, C., Long, A., & Van der Wardt, V. (2021). Exercise interventions for older adults: A systematic review of meta-analyses. Journal of Sport and Health Science, 10(1), 29-47. https://doi.org/10.1016/j.jshs.2020.06.003

Xia, B., Shi, X. C., & Wu, J. W. (2020). Urolithin A exerts antiobesity effects through enhancing adipose tissue thermogenesis in mice. PLoS Biology, 18(3), e3000688. https://doi.org/10.1371/journal.pbio.3000688

Ghosh, N., Das, A.,& Sen, C. K. (2020). Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD+ and SIRT1. Scientific Reports, 10(1), 1-13. https://doi.org/10.1038/s41598-020-76564-7

Çiftçi, S., & Rakıcıoğlu, N. (2019). Yaşlılarda Kardiyovasküler Hastalıklar ve Beslenme Etmenleri. Beslenme ve Diyet Dergisi, 47(1), 82-90. https://doi.org/10.33076/2019.BDD.1204

Tang, L., Mo, Y., & Chen, A. (2017). Urolithin A alleviates myocardial ischemia/reperfusion injury via PI3K/Akt pathway. Biochemical and Biophysical Research Communications, 486(3), 774-780. https://doi.org/10.1016/j.bbrc.2017.03.119

Cui, G. H., Chen, W. Q., & Shen, Z. Y. (2018). Urolithin A shows anti-atherosclerotic activity via activation of class B scavenger receptor and activation of Nef2 signaling pathway. Pharmacological Reports, 70(3), 519-524. https://link.springer.com/article/10.1016/j.pharep.2017.04.020

Savi, M., Bocchi, L., & Del Rio, D. (2017). In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovascular Diabetology, 16(1), 1-13. https://cardiab.biomedcentral.com/articles/10.1186/s12933-017-0561-3

Kumar, A., & Singh, A. (2015) A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacol Reports, 67,195-203. https://doi.org/10.1016/j.pharep.2014.09.004

Niu, H., Álvarez-Álvarez, I., & Aguinaga-Ontoso, I. (2017). Prevalence and incidence of Alzheimer's disease in Europe: A meta-analysis. Neurología (English Edition), 32(8), 523-532. https://doi.org/10.1016/j.nrleng.2016.02.009

Wan, YW., Al-Ouran, R., &Allison ,K.(2020) Meta-analysis of the Alzheimer’s disease human brain transcriptome and functional dissection in mouse models. Cell Reports, 32,107908. https://doi.org/10.1016/j.celrep.2020.107908

Liu, H., Kang, H., & Li, F. (2018). Urolithin A inhibits the catabolic effect of TNFα on nucleus pulposus cell and alleviates intervertebral disc degeneration in vivo. Frontiers in Pharmacology, 9, 1043. https://doi.org/10.3389/fphar.2018.01043

Kshirsagar, S., Alvir, R. V., & Reddy, P. H. (2022). A Combination Therapy of Urolithin A+ EGCG Has Stronger Protective Effects than Single Drug Urolithin A in a Humanized Amyloid Beta Knockin Mice for Late-Onset Alzheimer’s Disease. Cells, 11(17), 2660. https://doi.org/10.3390/cells11172660

DaSilva, N. A., Nahar, P. P., & Seeram, N. P. (2019). Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro. Nutritional Neuroscience, 22(3), 185-195. https://doi.org/10.1080/1028415X.2017.1360558

Velagapudi, R., Lepiarz, I., & Olajide, O. A. (2019). Induction of autophagy and activation of SIRT‐1 deacetylation mechanisms mediate neuroprotection by the pomegranate metabolite urolithin A in BV2 microglia and differentiated 3D human neural progenitor cells. Molecular Nutrition & Food Research, 63(10), 1801237. https://doi.org/10.1002/mnfr.201801237

Chen, P., Chen, F., & Zhou, B. (2019). Activation of the miR-34a-mediated SIRT1/mTOR signaling pathway by urolithin A attenuates D-galactose-induced brain aging in mice. Neurotherapeutics, 16(4), 1269-1282. https://doi.org/10.1007/s13311-019-00753-0

Vergroesen, P. P., Kingma, I., & Smit, T. H. (2015). Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthritis and Cartilage, 23(7), 1057-1070. https://doi.org/10.1016/j.joca.2015.03.028

Adams MA, Roughley PJ. (2006): What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976), 31(18),2151-2161. https://journals.lww.com/spinejournal/abstract/2006/08150/what_is_intervertebral_disc_degeneration,_and_what.24.aspx

Lin, J., Zhuge, J., & Wang, X. (2020). Urolithin A-induced mitophagy suppresses apoptosis and attenuates intervertebral disc degeneration via the AMPK signaling pathway. Free Radical Biology and Medicine, 150, 109-119. https://doi.org/10.1016/j.freeradbiomed.2020.02.024

Fu, X., Gong, L. F., & Yu, K. H. (2019). Urolithin A targets the PI3K/Akt/NF-κB pathways and prevents IL-1β-induced inflammatory response in human osteoarthritis: in vitro and in vivo studies. Food & Function, 10(9), 6135-6146. https://doi.org/10.1039/C9FO01332F

Koçhan, K., Erdem, E., & Gönen, C. (2014). Inflamatuvar barsak hastalıklarının aktivite tayininde endoskopik aktivite indeksleri ile laboratuvar parametreleri arasındaki ilişki. Akademik Gastroenteroloji Dergisi, 13(3), 101-106. https://dergipark.org.tr/en/pub/agd/issue/1447/17446

Sairenji, T., Collins, K. L., & Evans, D. V. (2017). An update on inflammatory bowel disease. Primary Care: Clinics in Office Practice, 44(4), 673-692. https://doi.org/10.1016/j.pop.2017.07.010

Bouchard, J., Acharya, A., & Mehta, R. L. (2015). A prospective international multicenter study of AKI in the intensive care unit. Clinical Journal of the American Society of Nephrology, 10(8), 1324-1331. http://cjasn. asnjournals.org/lookup/suppl/doi:10.2215/CJN.04360514/-/ DCSupplemental

Zou, D., Ganugula, R., & Kumar, M. R. (2019). Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. American Journal of Physiology-Renal Physiology, 317(5), F1255-F1264. https://doi.org/10.1152/ajprenal.00346.2019

Jing, T., Liao, J., & Pan, H. (2019). Protective effect of urolithin a on cisplatin-induced nephrotoxicity in mice via modulation of inflammation and oxidative stress. Food and Chemical Toxicology, 129, 108-114. https://doi.org/10.1016/j.fct.2019.04.031

Oğuz, A. (2008). Metabolik sendrom. Klinik Psikofarmakoloji Bülteni, 18(2), 57-61. http://metsend.org/upload/26199-metaboliksendromtedavipdf.pdf

Creative Commons License

Bu çalışma Creative Commons Attribution 4.0 International License ile lisanslanmıştır.

Telif Hakkı (c) 2024 Toros Üniversitesi Gıda, Beslenme ve Gastronomi Dergisi

İndirmeler

İndirme verileri henüz mevcut değil.