Polifenoller ve sportif performans üzerindeki etkileri
PDF

Anahtar Kelimeler

Polifenol
takviye
antioksidan
egzersiz
sportif performans

Nasıl Atıf Yapılır

Tuşat, E., & Parlak, E. (2024). Polifenoller ve sportif performans üzerindeki etkileri. Toros Üniversitesi Gıda, Beslenme Ve Gastronomi Dergisi, 2(2), 225–243. https://doi.org/10.58625/jfng-2300

Özet

Polifenoller, bir diğer adıyla fenolik bileşikler; patojen organizmaların varlığı, ultraviyole ışına maruz kalma, olumsuz iklim koşulları gibi durumlarda bitkiler tarafından sentezlenen savunma mekanizmasında görev alan biyoaktif bileşenler olarak karşımıza çıkmaktadırlar. Günümüze kadar 8000’den fazla fenolik bileşik tanımlanmıştır. Doğal polifenoller; sebze, meyve, baklagiller, tahıllar, tohumların yenilebilir bitki kısımlarında, ayrıca kırmızı şarap ve kakao gibi besinlerde bulunmaktadır. Polifenol (PP) takviyelerinin kullanılmasının, tüm vücut antioksidan kapasitesini arttırdığı ve endotel fonksiyonunu modüle ettiği bildirilmektedir. Çeşitli epidemiyolojik çalışmalar ve klinik deneyler, birçok biyolojik aktivite sergileme özelliklerinden dolayı PP’lerin alımındaki artış ile bazı kronik hastalıkların (koroner kalp hastalığı, inme, tip II diyabet ve bazı kanser çeşitleri) oluşma riskinde azalma olduğunu kanıtlamışlardır. Aynı zamanda, sportif performans üzerinde yararlı olabilecek etkilerinden ötürü son yıllarda, sporcular tarafından antioksidan bileşiklerden zengin takviyelerin tüketiminin büyük ölçüde artmakta olduğu görülmektedir. Literatürde yer alan çalışma sonuçları, PP takviyelerinin kullanılmasının rekreasyonel, rekabetçi veya elit sporcuların lehine veya aleyhine olacağının önerisini vermede henüz yetersiz kalmaktadır.  Bu anlamda, daha çok araştırmaya ve kanıta ihtiyaç bulunmaktadır. Daha yüksek oksidatif stres seviyelerine sahip olan sporcuların, antioksidan takviyelerine açıkça daha fazla ihtiyaç duyacağından, bu sporcularda ilk olarak oksidatif stres durumunun taranması önem arz etmektedir. Polifenollerin çok sayıda biyolojik etkileri bulunduğundan; gelecekteki egzersiz çalışmalarında yalnızca sportif performansa odaklanmak yerine, egzersiz ve seçilen PP takviyesi arasındaki fizyolojik etkileşimleri belirlemeye uygun ve spesifik bir şekilde çalışılması daha doğru olacaktır.

https://doi.org/10.58625/jfng-2300
PDF

Referanslar

D’Angelo, S. (2019). Polyphenols and athletic performance: a review on human data. Plant physiological aspects of phenolic compounds, 1-24. https:// doi:10.5772/intechopen.85031

Stear, S. J., Burke, L. M., & Castell, L. M. (2009). BJSM reviews: A–Z of nutritional supplements: dietary supplements, sports nutrition foods and Ergogenic aids for health and performance Part 3. British Journal of Sports Medicine, 43(12), 890-892. http://dx.doi.org/10.1136/bjsm.2009.065417

Mankowski, R. T., Anton, S. D., Buford, T. W., & Leeuwenburgh, C. (2015). Dietary antioxidants as modifiers of physiologic adaptations to exercise. Medicine and science in sports and exercise, 47(9), 1857.

Overdevest, E., Wouters, J. A., Wolfs, K. H., van Leeuwen, J. J., & Possemiers, S. (2018). Citrus flavonoid supplementation improves exercise performance in trained athletes. Journal of sports science & medicine, 17(1), 24. ence and Medicine (2018) 17, 24-30 http://www.jssm.org PMC5844206

Malaguti, M., Angeloni, C., & Hrelia, S. (2013). Polyphenols in exercise performance and prevention of exercise-induced muscle damage. Oxidative medicine and cellular longevity, 2013. https://doi.org/10.1155/2013/825928

Wagner, K. H. (2015). Antioxidants in Sport Nutrition: All the Same Effectiveness?. https://www.ncbi.nlm.nih.gov/books/NBK299053/

Sellami, M., Slimeni, O., Pokrywka, A., Kuvačić, G., D Hayes, L., Milic, M., & Padulo, J. (2018). Herbal medicine for sports: a review. Journal of the International Society of Sports Nutrition, 15(1), 14. https://doi.org/10.1186/s12970-018-0218-y

Keli, S. O., Hertog, M. G., Feskens, E. J., & Kromhout, D. (1996). Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen study. Archives of internal medicine, 156(6), 637-642. doi:10.1001/archinte.1996.00440060059007

Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 79(5), 727-747. https://doi.org/10.1093/ajcn/79.5.727

Manach, C., Williamson, G., Morand, C., Scalbert, A., & Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American journal of clinical nutrition, 81(1), 230S-242S. https://doi.org/10.1093/ajcn/81.1.230S

Myburgh, K. H. (2014). Polyphenol supplementation: benefits for exercise performance or oxidative stress?. Sports Medicine, 44, 57-70. DOI 10.1007/s40279-014-0151-4

Jówko, E. (2015). Green tea catechins and sport performance. SPORT NUTRITION, 123. https://www.ncbi.nlm.nih.gov/books/NBK299060/

Machado, Á. S., Da Silva, W., Souza, M. A., & Carpes, F. P. (2018). Green tea extract preserves neuromuscular activation and muscle damage markers in athletes under cumulative fatigue. Frontiers in physiology, 9, 1137. https://doi.org/10.3389/fphys.2018.01137

Belviranli, M., & Okudan, N. (2015). Well-known antioxidants and newcomers in sport nutrition: coenzyme Q10, quercetin, resveratrol, pterostilbene, pycnogenol and astaxanthin. https://www.ncbi.nlm.nih.gov/books/NBK299046/

Novelle, M. G., Wahl, D., Diéguez, C., Bernier, M., & De Cabo, R. (2015). Resveratrol supplementation: where are we now and where should we go?. Ageing research reviews, 21, 1-15. https://doi.org/10.1016/j.arr.2015.01.002

Martins, N. C., Dorneles, G. P., Blembeel, A. S., Marinho, J. P., Proença, I. C. T., da Cunha Goulart, M. J. V., ... & Ribeiro, J. L. (2020). Effects of grape juice consumption on oxidative stress and inflammation in male volleyball players: A randomized, double-blind, placebo-controlled clinical trial. Complementary Therapies in Medicine, 54, 102570. https://doi.org/10.1016/j.ctim.2020.102570

Pilolla, K. D., Armendariz, J., Burrus, B. M., Baston, D. S., McCarthy, K. A., & Bloedon, T. K. (2023). Effects of Wild Blueberries on Fat Oxidation Rates in Aerobically Trained Males. Nutrients, 15(6), 1339. https://doi.org/10.3390/nu15061339

Cavarretta, E., Peruzzi, M., Del Vescovo, R., Di Pilla, F., Gobbi, G., Serdoz, A., ... & Carnevale, R. (2018). Dark chocolate intake positively modulates redox status and markers of muscular damage in elite football athletes: A randomized controlled study. Oxidative medicine and cellular longevity, 2018. https://doi.org/10.1155/2018/4061901

Ammar, A., Turki, M., Hammouda, O., Chtourou, H., Trabelsi, K., Bouaziz, M., ... & Yaich, S. (2017). Effects of pomegranate juice supplementation on oxidative stress biomarkers following weightlifting exercise. Nutrients, 9(8), 819. https://doi.org/10.3390/nu9080819

Potter, J. A., Hodgson, C. I., Broadhurst, M., Howell, L., Gilbert, J., Willems, M. E., & Perkins, I. C. (2020). Effects of New Zealand blackcurrant extract on sport climbing performance. European journal of applied physiology, 120, 67-75. https://doi.org/10.1007/s00421-019-04226-2

Tanabe, Y., Chino, K., Sagayama, H., Lee, H. J., Ozawa, H., Maeda, S., & TAkAHASHI, H. (2019). Effective timing of curcumin ingestion to attenuate eccentric exercise-induced muscle soreness in men. Journal of nutritional science and vitaminology, 65(1), 82-89. https://doi.org/10.3177/jnsv.65.82

Maleki, B. H., Tartibian, B., Mooren, F. C., Krüger, K., FitzGerald, L. Z., & Chehrazi, M. (2016). A randomized controlled trial examining the effects of 16 weeks of moderate-to intensive cycling and honey supplementation on lymphocyte oxidative DNA damage and cytokine changes in male road cyclists. Cytokine, 88, 222-231. https://doi.org/10.1016/j.cyto.2016.09.016

Gaamouri, N., Zouhal, H., Hammami, M., Hackney, A. C., Abderrahman, A. B., Saeidi, A., ... & Ounis, O. B. (2019). Effects of polyphenol (carob) supplementation on body composition and aerobic capacity in taekwondo athletes. Physiology & behavior, 205, 22-28. https://doi.org/10.1016/j.physbeh.2019.03.003

Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford university press, USA. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001

Bast A, Haenen GRMM. (2015) Chapter 2: Nutritional antioxidants it is time to categorise. In: Lamprecht M, editor. Antioxidants in Sport Nutrition. Boca Raton, FL: CRC Press/Taylor & Francis. https://www.ncbi.nlm.nih.gov/books/NBK299048/

Reid, M. B., Haack, K. E., Franchek, K. M., Valberg, P. A., Kobzik, L. E. S. T. E. R., & West, M. S. (1992). Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. Journal of applied physiology, 73(5), 1797-1804. https://doi.org/10.1152/jappl.1992.73.5.1797

Gomez-Cabrera, M. C., Domenech, E., Romagnoli, M., Arduini, A., Borras, C., Pallardo, F. V., ... & Vina, J. (2008). Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. The American journal of clinical nutrition, 87(1), 142-149. https://doi.org/10.1093/ajcn/87.1.142

Kerksick, C. M., & Zuhl, M. (2015). Mechanisms of oxidative damage and their impact on contracting muscle. Antioxidants in sport nutrition, Chapter-1. https://www.taylorfrancis.com/chapters/oa-edit/10.1201/b17442-1/mechanisms-oxidative-damage-impact-contracting-muscle-chad-kerksick-micah-zuhl (DOI:10.1201/b17442-1)

Sies, H. (2015). Oxidative stress: a concept in redox biology and medicine. Redox biology, 4, 180-183. https://doi.org/10.1016/j.redox.2015.01.002

Kawamura, T., & Muraoka, I. (2018). Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants, 7(9), 119. https://doi.org/10.3390/antiox7090119

Webb, R., Hughes, M. G., Thomas, A. W., & Morris, K. (2017). The ability of exercise-associated oxidative stress to trigger redox-sensitive signalling responses. Antioxidants, 6(3), 63. https://doi.org/10.3390/antiox6030063

Tarhan, N. Keten tohumu ve diyabetik kardiyovasküler komplikasyonlar (Master's thesis, Sağlık Bilimleri Enstitüsü).

Cianciosi, D., Forbes-Hernández, T. Y., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P. P., ... & Battino, M. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322.

Williamson, G. (2017). The role of polyphenols in modern nutrition. Nutrition bulletin, 42(3), 226-235. https://doi.org/10.1111/nbu.12278

González-Castejón, M., & Rodriguez-Casado, A. (2011). Dietary phytochemicals and their potential effects on obesity: a review. Pharmacological research, 64(5), 438-455. https://doi.org/10.1016/j.phrs.2011.07.004

Brglez Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž., & Bren, U. (2016). Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 21(7), 901. https://doi.org/10.3390/molecules21070901

Hussain, M. B., Hassan, S., Waheed, M., Javed, A., Farooq, M. A., & Tahir, A. (2019). Bioavailability and metabolic pathway of phenolic compounds. In Plant physiological aspects of phenolic compounds. IntechOpen. DOI: 10.5772/intechopen.84745

Santos, R. M. M., & Lima, D. R. A. (2016). Coffee consumption, obesity and type 2 diabetes: a mini-review. European journal of nutrition, 55, 1345-1358. https:// doi: 10.1007/s00394-016-1206-0.

MacRae, H. S., & Mefferd, K. M. (2006). Dietary antioxidant supplementation combined with quercetin improves cycling time trial performance. International journal of sport nutrition and exercise metabolism, 16(4), 405-419. https://doi.org/10.1123/ijsnem.16.4.405

Darvishi, L., Ghiasvand, R., Hariri, M., Askari, G., Rezai, P., Aghaie, M., ... & Mashhadi, N. S. (2013). Quercetin supplementation does not attenuate exercise performance and body composition in young female swimmers. International Journal of Preventive Medicine, 4(Suppl 1), S43. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665024/

O’Fallon, K. S., Kaushik, D., Michniak-Kohn, B., Dunne, C. P., Zambraski, E. J., & Clarkson, P. M. (2012). Effects of quercetin supplementation on markers of muscle damage and inflammation after eccentric exercise. International journal of sport nutrition and exercise metabolism, 22(6), 430-437. https://doi.org/10.1123/ijsnem.22.6.430

Daneshvar, P., Hariri, M., Ghiasvand, R., Askari, G., Darvishi, L., Mashhadi, N. S., & Khosravi-Boroujeni, H. (2013). Effect of eight weeks of quercetin supplementation on exercise performance, muscle damage and body muscle in male badminton players. International journal of preventive medicine, 4(Suppl 1), S53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665027/

Askari, G., Ghiasvand, R., Karimian, J., Feizi, A., Paknahad, Z., Sharifirad, G., & Hajishafiei, M. (2012). Does quercetin and vitamin C improve exercise performance, muscle damage, and body composition in male athletes?. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 17(4), 328. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526124/

Somerville, V., Bringans, C., & Braakhuis, A. (2017). Polyphenols and performance: a systematic review and meta-analysis. Sports Medicine, 47, 1589-1599. https://doi.org/10.1007/s40279-017-0675-5

Sgrò, P., Ceci, R., Lista, M., Patrizio, F., Sabatini, S., Felici, F., ... & Di Luigi, L. (2021). Quercetin modulates IGF-I and IGF-II levels after eccentric exercise-induced muscle-damage: a placebo-controlled study. Frontiers in Endocrinology, 1412. https://doi.org/10.3389/fendo.2021.745959

Martin-Rincon, M., Gelabert-Rebato, M., Galvan-Alvarez, V., Gallego-Selles, A., Martinez-Canton, M., Lopez-Rios, L., ... & Calbet, J. A. (2020). Supplementation with a mango leaf extract (Zynamite®) in combination with quercetin attenuates muscle damage and pain and accelerates recovery after strenuous damaging exercise. Nutrients, 12(3), 614. https://doi.org/10.3390/nu12030614

Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition reviews, 56(11), 317-333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x

Tzima, K., Brunton, N. P., & Rai, D. K. (2018). Qualitative and quantitative analysis of polyphenols in Lamiaceae plants—A review. Plants, 7(2), 25. https://doi.org/10.3390/plants7020025

Mattera, R., Benvenuto, M., Giganti, M. G., Tresoldi, I., Pluchinotta, F. R., Bergante, S., ... & Bei, R. (2017). Effects of polyphenols on oxidative stress-mediated injury in cardiomyocytes. Nutrients, 9(5), 523. https://doi.org/10.3390/nu9050523

Jówko, E., Długołęcka, B., Makaruk, B., & Cieśliński, I. (2015). The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. European journal of nutrition, 54, 783-791.

Panza, V. S. P., Wazlawik, E., Schütz, G. R., Comin, L., Hecht, K. C., & da Silva, E. L. (2008). Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition, 24(5), 433-442. https://doi.org/10.1016/j.nut.2008.01.009

Sobhani, V., Mehrtash, M., Shirvani, H., & Fasihi-Ramandi, M. (2020). Effects of short-term green tea extract supplementation on VO2 max and inflammatory and antioxidant responses of healthy young men in a hot environment. International Journal of Preventive Medicine, 11. https://doi.org/ 10.4103/ijpvm.IJPVM_64_19

Sadowska-Krępa, E., Domaszewski, P., Pokora, I., Żebrowska, A., Gdańska, A., & Podgórski, T. (2019). Effects of medium-term green tea extract supplementation combined with CrossFit workout on blood antioxidant status and serum brain-derived neurotrophic factor in young men: A pilot study. Journal of the International Society of Sports Nutrition, 16(1), 13. https://doi.org/10.1186/s12970-019-0280-0

Dolinsky, V. W., Jones, K. E., Sidhu, R. S., Haykowsky, M., Czubryt, M. P., Gordon, T., & Dyck, J. R. (2012). Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats. The Journal of physiology, 590(11), 2783-2799. https://doi.org/10.1113/jphysiol.2012.230490

Hart, N., Sarga, L., Csende, Z., Koltai, E., Koch, L. G., Britton, S. L., ... & Radak, Z. (2013). Resveratrol enhances exercise training responses in rats selectively bred for high running performance. Food and chemical toxicology, 61, 53-59. https://doi.org/10.1016/j.fct.2013.01.051

Price, N. L., Gomes, A. P., Ling, A. J., Duarte, F. V., Martin-Montalvo, A., North, B. J., ... & Sinclair, D. A. (2012). SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell metabolism, 15(5), 675-690. https://doi.org/10.1016/j.cmet.2012.04.003

McAnulty, L. S., Miller, L. E., Hosick, P. A., Utter, A. C., Quindry, J. C., & McAnulty, S. R. (2013). Effect of resveratrol and quercetin supplementation on redox status and inflammation after exercise. Applied Physiology, Nutrition, and Metabolism, 38(7), 760-765. https://doi.org/10.1139/apnm-2012-0455

Dolinsky, V. W., & Dyck, J. R. (2014). Experimental studies of the molecular pathways regulated by exercise and resveratrol in heart, skeletal muscle and the vasculature. Molecules, 19(9), 14919-14947. https://doi.org/10.3390/molecules190914919

Martins, N. C., Dorneles, G. P., Blembeel, A. S., Marinho, J. P., Proença, I. C. T., da Cunha Goulart, M. J. V., ... & Ribeiro, J. L. (2020). Effects of grape juice consumption on oxidative stress and inflammation in male volleyball players: A randomized, double-blind, placebo-controlled clinical trial. Complementary Therapies in Medicine, 54, 102570. https://doi.org/10.1016/j.ctim.2020.102570

de Lima Tavares Toscano, L., Silva, A. S., de França, A. C. L., de Sousa, B. R. V., de Almeida Filho, E. J. B., da Silveira Costa, M., ... & da Conceição Rodrigues Gonçalves, M. (2020). A single dose of purple grape juice improves physical performance and antioxidant activity in runners: a randomized, crossover, double-blind, placebo study. European Journal of Nutrition, 59, 2997-3007. https://doi.org/10.1007/s00394-020-02453-4

Tsao, J. P., Liu, C. C., Wang, H. F., Bernard, J. R., Huang, C. C., & Cheng, I. S. (2021). Oral Resveratrol supplementation attenuates exercise-induced Interleukin-6 but not Oxidative Stress after a high intensity cycling challenge in adults. International Journal of Medical Sciences, 18(10), 2137. https://www.medsci.org/v18p2137.htm

Baltaci, S. B., Mogulkoc, R., & Baltaci, A. K. (2016). Resveratrol and exercise. Biomedical reports, 5(5), 525-530. https://doi.org/10.3892/br.2016.777

de Sousa, B. R. V., de Lima Tavares Toscano, L., de Almeida Filho, E. J. B., Sena, K. F., Costa, M. S., de Souza Cunha, R. C., ... & Silva, A. S. (2022). Purple grape juice improves performance of recreational runners, but the effect is genotype dependent: a double blind, randomized, controlled trial. Genes & Nutrition, 17(1), 1-14. https://doi.org/10.1186/s12263-022-00710-1

Hurst, R. D., Wells, R. W., Hurst, S. M., McGhie, T. K., Cooney, J. M., & Jensen, D. J. (2010). Blueberry fruit polyphenolics suppress oxidative stress‐induced skeletal muscle cell damage in vitro. Molecular nutrition & food research, 54(3), 353-363. https://doi.org/10.1002/mnfr.200900094

Lynn, A., Garner, S., Nelson, N., Simper, T. N., Hall, A. C., & Ranchordas, M. K. (2018). Effect of bilberry juice on indices of muscle damage and inflammation in runners completing a half-marathon: A randomised, placebo-controlled trial. Journal of the International Society of Sports Nutrition, 15(1), 22. https://doi.org/10.1186/s12970-018-0227-x

Castro-Acosta, M. L., Smith, L., Miller, R. J., McCarthy, D. I., Farrimond, J. A., & Hall, W. L. (2016). Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. The Journal of Nutritional Biochemistry, 38, 154-161. https://doi.org/10.1016/j.jnutbio.2016.09.002

Godwin, C., Cook, M. D., & Willems, M. E. (2017). Effect of New Zealand blackcurrant extract on performance during the running based anaerobic sprint test in trained youth and recreationally active male football players. Sports, 5(3), 69. https://doi.org/10.3390/sports5030069

Strauss, J. A., Willems, M. E., & Shepherd, S. O. (2018). New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females. European journal of applied physiology, 118, 1265-1272. https://doi.org/10.1007/s00421-018-3858-3

Bell, P. G., McHugh, M. P., Stevenson, E., & Howatson, G. (2014). The role of cherries in exercise and health. Scandinavian journal of medicine & science in sports, 24(3), 477-490. https://doi.org/10.1111/sms.12085

Bell, P. G., Walshe, I. H., Davison, G. W., Stevenson, E., & Howatson, G. (2014). Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling. Nutrients, 6(2), 829-843. https://doi.org/10.3390/nu6020829

McCormick, R., Peeling, P., Binnie, M., Dawson, B., & Sim, M. (2016). Effect of tart cherry juice on recovery and next day performance in well-trained Water Polo players. Journal of the International Society of Sports Nutrition, 13(1), 41. https://doi.org/10.1186/s12970-016-0151-x

Connolly, D. A. J., McHugh, M. P., & Padilla-Zakour, O. I. (2006). Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. British journal of sports medicine, 40(8), 679-683. http://dx.doi.org/10.1136/bjsm.2005.025429

Crum, E. M., Barnes, M. J., & Stannard, S. R. (2018). Multiday pomegranate extract supplementation decreases oxygen uptake during submaximal cycling exercise, but cosupplementation with n-acetylcysteine negates the effect. International journal of sport nutrition and exercise metabolism, 28(6), 586-592. https://doi.org/10.1123/ijsnem.2017-0407

Allgrove, J., Farrell, E., Gleeson, M., Williamson, G., & Cooper, K. (2011). Regular dark chocolate consumption’s reduction of oxidative stress and increase of free-fatty-acid mobilization in response to prolonged cycling. International journal of sport nutrition and exercise metabolism, 21(2), 113-123. https://doi.org/10.1123/ijsnem.21.2.113

Patel, R. K., Brouner, J., & Spendiff, O. (2015). Dark chocolate supplementation reduces the oxygen cost of moderate intensity cycling. Journal of the International Society of Sports Nutrition, 12(1), 47. https://doi.org/10.1186/s12970-015-0106-7

Chilelli, N. C., Ragazzi, E., Valentini, R., Cosma, C., Ferraresso, S., Lapolla, A., & Sartore, G. (2016). Curcumin and boswellia serrata modulate the glyco-oxidative status and lipo-oxidation in master athletes. Nutrients, 8(11), 745. https://doi.org/10.3390/nu8110745

McFarlin, B. K., Venable, A. S., Henning, A. L., Sampson, J. N. B., Pennel, K., Vingren, J. L., & Hill, D. W. (2016). Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA clinical, 5, 72-78. https://doi.org/10.1016/j.bbacli.2016.02.003

Basham Ms, Waldman H.S., Krings B.M Lamberth J., Smith J.E.W., McAllister, M.J. (2020) Effect of Curcumin Supplementation on Exercise-Induced Oxidative Stress, Inflammation, Muscle Damage, and Muscle Soreness. J Diet Suppl, 17(4), 401-414. https://doi.org/10.1080/19390211.2019.1604604

Pazır, F. & Alper, Y. (2016). Keçiboynuzu Meyvesi Ceratonia siliqua L. ve Sağlık . Akademik Gıda,14(3),302-306.Retrievedfrom https://dergipark.org.tr/tr/pub/akademik-gida/issue/55782/763560

Creative Commons License

Bu çalışma Creative Commons Attribution 4.0 International License ile lisanslanmıştır.

Telif Hakkı (c) 2024 Toros Üniversitesi Gıda, Beslenme ve Gastronomi Dergisi

İndirmeler

İndirme verileri henüz mevcut değil.